排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (7): 574-579    DOI: 10.3969/j.issn.1674-8530.17.0081
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于叶片包角和出口安放角对叶轮的改进设计
王燕燕1,2,赵伟国1,2*,韩向东1,2,郑英杰1,2
1. 兰州理工大学能源与动力工程学院, 甘肃 兰州730050; 2. 甘肃省流体机械及系统重点实验室, 甘肃 兰州730050
Improved centrifugal pump impeller design in terms of blade wrap and exit angles
WANG Yanyan1,2, ZHAO Weiguo1,2*, HAN Xiangdong1,2, ZHENG Yingjie1,2
1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Key Laboratory of Fluid Machinery and Systems, Gansu Province, Lanzhou, Gansu 730050, China
 全文: PDF (10391 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于计算流体力学方法,对KQW250-400型离心泵全流场进行数值模拟.基于叶片设计理论,对叶轮进行改进设计,通过改变叶片包角Φ和叶片出口安放角β2建立5个不同的叶轮模型,并数值计算获得5个模型泵相应的外特性曲线和内部流场分布,对比分析可知:叶片包角Φ=126°与叶片出口安放角β2=24°的叶轮最优;设计流量为550 m3/h时,扬程计算值为53.49 m,效率计算值为87.66%.原始离心泵和带改进叶轮的离心泵外特性试验测试结果表明:当流量Q=551.381 m3/h时,测得原始扬程为49.10 m,效率为79.88%;流量Q=550.823 m3/h时,测得带改进叶轮的扬程为51.84 m,效率为85.65%.改进后设计工况点扬程提高了2.74 m,效率提高了5.77%,且改进后的离心泵效率整体高于改进前,离心泵的整体性能得到了提升.研究结果有利于提高建筑物用泵的经济效益,从而降低能耗.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王燕燕
赵伟国
*
韩向东
郑英杰
关键词离心泵   叶轮   改进设计   数值模拟   性能测试     
Abstract: Based on computational fluid dynamics(CFD)technology, numerical simulation of flow field in the whole centrifugal pump of KQW250-400 type was performed. At first, the original impeller blade design was altered according to blade design theory, and five impeller models were built by changing the blade wrap angle Φ and the blade exit angle β2. Then, the corresponding hydraulic perfor-mance curves and internal flow fields of the pumps with these different impeller models were obtained numerically. The results indicate that the impeller with blade wrap angle Φ=126° and exit angle β2 = 24° is the optimal and with the best performance, i.e. at the design flow rate Qd=550 m3/h, the calculated head and efficiency are 53.49 m and 87.66%, respectively. Based on the experimental data, the centrifugal pump with the original impeller is subject to a 49.10 m head and a 79.88% efficiency at the flow rate Q=551.381 m3/h in comparison with 51.84 m head and 85.65% efficiency at the flow rate Q=550.823 m3/h for the pump with the optimized impeller. As such the head and efficiency have increased by 2.74 m and 5.77%, respectively, under the design condition; especially, the efficiency curve with the optimized impeller of the centrifugal pump is all above the curve with the original impeller. This suggests that the overall performance of the centrifugal pump has been improved. This outcome is conducive to improving the economic benefits of pump utilization in buildings and subsequently reducing energy consumption.
Key wordscentrifugal pump   impeller   improved design   numerical simulation   performance test   
收稿日期: 2017-04-17;
基金资助:国家自然科学基金资助项目(51269011);甘肃省高等学校基本科研业务费
引用本文:   
王燕燕,,赵伟国等. 基于叶片包角和出口安放角对叶轮的改进设计[J]. 排灌机械工程学报, 2019, 37(7): 574-579.
WANG Yan-Yan-,,ZHAO Wei-Guo- et al. Improved centrifugal pump impeller design in terms of blade wrap and exit angles[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(7): 574-579.
 
[1] 杨乐乐. 离心泵参数化设计与内部流场仿真研究[D]. 秦皇岛: 燕山大学, 2017.
[2] 陈冰. 螺旋离心泵的叶片变螺距设计及数值模拟[D]. 兰州: 兰州理工大学, 2008.
[3] MINEMURA K, TOMOMI U. Three dimension calcula-tion of air water two-phase flow in centrifugal pump impeller based on a bubbly flow model with fixed cavity[J]. JSME international journal series B,1994, 37(4):726-735.
[4] 杨华, 谷传刚, 汤方平, 等.基于CFD紊流计算的离心泵叶型优化设计[J]. 扬州大学学报(自然科学版), 2007, 10(3): 41-44.
[5] MINEMURA K, TOMOMI U. Prediction of air-water two-phase flow performance of a centrifugal pump based on one-dimension two-fluid model[J]. Journal of fluids engineering, 1998,120(3): 327-334.
[6] 李清平. 螺旋轴流式多相泵设计初探及其内部气液两相流动的三维数值分析[D]. 北京: 中国石油大学, 1998.
[7] WU Yulin. Three-dimension calculation of oil-bubble flows through a centrifugal Pump impeller[C]//Proceedings of the Third International Conference on Pump and Fan. Beijing:Tsinghua University Press, 1998: 526-532.
[8] 班耀涛, 赵宏. 螺旋轴流式油气多相泵的性能预测模型[J]. 工程热物理学报, 2000, 21(2): 187-190.
[9] YANG Hua, GU Chuangang, TANG Fangping, et al. Blade profile optimization for centrifugal pump based on turbulence numerical simulation[J]. Journal of Yang-zhou University(natural science edition),2007,10(3): 41-44.(in Chinese)
[10] 孙建平, 张克危, 刘龙珍. 离心泵叶片形状的优化[J]. 华中理工大学学报, 1997, 25(2): 61-63.
[11] BAN Yaotao, ZHAO Hong. Performance prediction model of helico-axial multiphase pump[J]. Journal of engineering thermophysics, 2000, 21(2): 187-190.(in Chinese)
[12] SUN Jianping, ZHANG Kewei, LIU Longzhen. Optimization of the blade profile of centrifugal pumps[J]. Journal of Huazhong University of Science and Technology, 1997,25(2): 91-63.(in Chinese)
[13] 谢红太,党小刚. 基于Inventor的多次曲线创建及其在叶片泵设计中的应用[J]. 山东理工大学学报(自然科学版),2018,32(2):70-73.
[14] 黄思, 吴玉林. 叶片式泵内气液两相泡状流的三维数值计算[J]. 水利学报, 2001(6): 57-61.
[15] XIE Hongtai, DANG Xiaogang. Research on the method of creating multiple curves using Inventor and its application in the manufacture of vane pump[J]. Journal of Shandong University of Technology(natural science edition), 2018, 32(2): 70-73.(in Chinese)
[16] 赵伟国,盛建萍,杨军虎,等.基于CFD的离心泵优化设计与试验[J].农业工程学报,2015,31(21):125-131.
[17] HUANG Si, WU Yulin. 3-D calculation of gas-oil flow in rotodynamic pump based on a bubbly flow model[J]. Journal of hydraulic engineering, 2001(6): 57-61.(in Chinese)
[18] 余志毅,曹树良,王国玉.叶片泵内气液两相流的三维流动数值模型[J].北京理工大学学报,2007,27(12):1057-1060,1064.
[19] ZHAO Weiguo, SHENG Jianping, YANG Junhu, et al. Optimization design and experiment of centrifugal pump based on CFD[J]. Transactions of the CSAE, 2015, 31(21): 125-131.(in Chinese)
[20] 关醒凡.现代泵设计手册[M]. 北京:中国宇航出版社,2011.
[21] 杨军虎, 边中, 钟春林, 等. 基于水力损失计算的离心泵叶轮叶片出口安放角选择方法[J]. 西华大学学报(自然科学版), 2016, 35(3): 89-92,112.
[22] YU Zhiyi, CAO Shuliang, WANG Guoyu. A numerical model for 3-D gas-liquid two-phase flow in vane pumps[J]. Transactions of Beijing Institute of Technology, 2007,27(12):1057-1060,1064.(in Chinese)
[23] 李雪琴,玉君,赵鹏,等.多相混输泵内气液两相分布的随机分形模型[J].广西大学学报(自然科学版),2010,35(5):756-761.
[24] YANG Junhu, BIAN Zhong, ZHONG Cunlin, et al. Method for selecting centrifugal pump impeller outlet angle based on calculation of centrifugal pump impeller′s hydraulic loss[J]. Journal of Xihua University(natural sciences), 2016, 35(3): 89-92,112.(in Chinese)
[25] 张忆宁,曹卫东,姚凌钧,等.不同叶片出口角下离心泵压力脉动及径向力分析[J].流体机械,2017,45(11):34-40.
[26] LI Xueqin,YU Jun, ZHAO Peng, et al. A random fractal model of gas-liquid distribution in multiphase pump[J]. Journal of Guangxi University(natural science edition), 2010,35(5):756-761.(in Chinese)
[27] ZHANG Yining,CAO Weidong,YAO Lingjun,et al. Analysis on pressure fluctuation and radial thrust of centrifugal pump under different blade outlet angle[J]. Fluid machinery, 2017,45(11):34-40.(in Chinese)
[28] 张伟. 叶片泵非设计工况叶轮内部流动分析和预测[D].上海: 上海大学, 2010.
[29] 陈世杰,杨帆,黄辉,等.立式轴流泵装置叶片区压力脉动数值分析[J].流体机械,2019,47(2):17-22.
[30] CARIDAD J, KENYERY F. CFD analysis of electric submersible pumps(ESP)handling two-phase mixtures[J]. Journal of energy resources technology, 2004, 126(2):99-104.
[31] CHEN Shijie,YANG Fan,HHUANG Hui,et al. Numeri-cal analysis of pressure fluctuation of the blade region in vertical axial-flow pumping system[J]. Fluid machi-nery, 2019,47(2):17-22.(in Chinese)
[1] 赵万勇*, 郭强,. 叶片进口边位置对离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(7): 568-573.
[2] 施卫东,*,侯云鹤,周岭,李跃民,薛少辉. 不同级数深井离心泵性能的数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(7): 562-567.
[3] 李强*,李森,燕浩,王道明,夏胜生. 叶片进口边对微型高速离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(7): 587-592.
[4] 袁建平,邓凡杰,张克玉,崔强磊,司乔瑞*. 气液两相流下叶片泵内部流动研究现状[J]. 排灌机械工程学报, 2019, 37(7): 553-561.
[5] 庞庆龙,蒋小平*,朱嘉炜,吴国桥,王鑫伟,王莉. 泵腔径向间隙对多级离心泵泵腔内部流场的影响[J]. 排灌机械工程学报, 2019, 37(7): 580-586.
[6] 杨勇飞,李伟*,施卫东,马新华,张文全,许荣军. 超低比转数自平衡多级离心泵转子模态分析[J]. 排灌机械工程学报, 2019, 37(7): 593-599.
[7] 徐海良,*,周永兴,杨放琼,,吴波,. 进料流量对深海矿石输送设备内流特性影响分析[J]. 排灌机械工程学报, 2019, 37(7): 618-624.
[8] 周颖,郑源*,何中伟,孙奥冉,张付林,汪昊蓝. 大型轴流泵反向发电压力脉动及流固耦合[J]. 排灌机械工程学报, 2019, 37(6): 480-485.
[9] 刘建河,李星光*,许晏铭. 喷针-环形电极配置对感应荷电喷雾的影响[J]. 排灌机械工程学报, 2019, 37(6): 521-527.
[10] 岑春海,潘中永*,王雪豹. 喷水推进器全流道空化流动数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 528-533.
[11] 赵伟国,,潘绪伟,*,宋启策,,李尚升,. 叶片进口边穿孔对离心泵空化性能的影响[J]. 排灌机械工程学报, 2019, 37(6): 461-468.
[12] 杨孙圣,邵珂*,戴韬. 叶片包角对混流泵作透平的特性影响[J]. 排灌机械工程学报, 2019, 37(6): 475-479.
[13] 岳书波,张鸿清*,刁明军,代尚逸. 泄洪闸胸墙压坡段的数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 491-497.
[14] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.
[15] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved