排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (6): 480-485    DOI: 10.3969/j.issn.1674-8530.18.0034
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
大型轴流泵反向发电压力脉动及流固耦合
周颖1,郑源2*,何中伟3,孙奥冉1,张付林1,汪昊蓝1
1. 河海大学水利水电学院, 江苏 南京 210098;2. 河海大学创新研究院, 江苏 南京210098;3. 华东勘测设计研究院, 浙江 杭州 311100
Pressure fluctuation and fluid-solid coupling in reverse generation of large axial flow pump
ZHOU Ying1,ZHENG Yuan2*,HE Zhongwei3,SUN Aoran1,ZHANG Fulin1,WANG Haolan1
1. College of Water Conservancy and Hydropower, Hohai University, Nanjing, Jiangsu 210098, China; 2. Innovation Research Institute, Hehai University, Nanjing, Jiangsu 210098, China; 3. East China Survey and Design Research Institute, Hangzhou, Zhejiang 311100, China
 全文: PDF (3013 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究南水北调东线某泵站机组反向发电的稳定性,对流道进行了全数值模拟,以研究反向发电工况的压力脉动及应力分布规律.在导叶进口、转轮进口和出口3个截面设置监测点.计算结果表明,轴流泵在反向发电工况下,转轮进口及出口处监测点的压力脉动时域图呈现周期性变化规律.压力脉动频率受转轮转频影响,集中在低频.转轮进口处中部及边缘处水流压力脉动明显,最大压力脉动发生在转轮出口处的中部水流,压力脉动幅值是转轮出口边缘处的近3倍,是转轮进口处中间及边缘的近2倍.叶轮出口处,压力脉动从轮毂到轮缘逐渐增大.研究结果表明,叶片总形变主要分布在叶片进水侧,其形变沿轮毂到轮缘方向逐渐增大;应力主要集中在叶片压力面与吸力面的根部,最大等效应力出现在叶片吸力面的叶轮根处.最大等效应力值在叶片材料安全范围内,对转轮运转机组寿命及破坏不构成影响.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周颖
郑源*
何中伟
孙奥冉
张付林
汪昊蓝
关键词轴流泵   泵站   反向发电   压力脉动   数值模拟   流固耦合     
Abstract: In order to study the stability of the reverse power generation of a pumping station unit in the East Route of the South to North Water Diversion Project, the full numerical simulation of the flow channel was carried out to study the pressure fluctuation and stress distribution in the reverse power generation. Monitoring points in three sections of guide vane inlet, runner inlet and outlet were set up. The results show that the time domain diagram of pressure pulsation at the inlet and outlet of the inlet of the axial flow pump shows periodic variation under the reverse generating condition. The frequency of pressure pulsation is influenced by the frequency of runner and concentrated at low frequency. The flow pressure fluctuating in the middle and edge of the inlet of the runner is obvious. The maximum pressure pulsation occurs at the middle of the runner outlet. The amplitude of the pressure pulsation is nearly 3 times the outlet edge of the runner, and it is nearly 2 times the middle and edge of the inlet of the runner. At the impeller outlet, the pressure pulsation increases from hub to rim. The results of fluid solid coupling show that the total deformation of the blade is mainly distributed in the inlet side of the blade, and the deformation increases gradually along the wheel hub to the wheel edge, and the stress mainly concentrates on the blade pressure surface and the root of the suction surface, and the maximum equi-valent stress appears at the impeller root of the suction surface of the blade. The maximum equivalent stress value does not affect the life and damage of the runner unit in the safety range of blade material.
Key wordsaxial flow pump   pump station   reverse power generation   pressure pulsation   numerical simulation   fluid solid coupling   
收稿日期: 2018-03-01;
基金资助:国家自然科学基金资助项目(51579080)
引用本文:   
周颖,郑源*,何中伟等. 大型轴流泵反向发电压力脉动及流固耦合[J]. 排灌机械工程学报, 2019, 37(6): 480-485.
ZHOU Ying-,ZHENG Yuan-*,HE Zhong-Wei- et al. Pressure fluctuation and fluid-solid coupling in reverse generation of large axial flow pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(6): 480-485.
 
[1] 戴启璠,王宏图,杨燕, 等.淮阴抽水站可逆式轴流泵装置性能研究[J].水电能源科学,2017(11):170-174.
[2] DAI Qifan, WANG Hongtu, YANG Yan,et al. Study on the performance of reversible axial flow pump unit in Huaiyin pumping station [J].Water resources and power,2017(11):170-174.(in Chinese)
[3] 汤方平, 张丽萍, 付建国,等. 轴流泵内部压力脉动数值预测及分析[J]. 排灌机械工程学报, 2013, 31(10):835-840. 浏览
TANG Fangping, ZHANG Liping, FU Jianguo,et al. Prediction and numerical analysis for pressure fluctua-tion of axial-flow pump[J]. Journal of drainage and irrigation machinery engineering, 2013, 31(10):835-840.(in Chinese)
[4] 赵浩儒,杨帆,吴俊欣,等.立式轴流泵装置压力脉动特性的试验[J].流体机械,2017,45(7):12-16.
[5]   ZHAO Haoru, YANG Fan, WU Junxin, et al. Test on pressure pulsation characteristics of vertical axial flow pump[J] Fluid machinery,2017,45(7):12-16.(in Chinese)
[6] 郑源,陈宇杰,张睿,等. 轴流泵失速工况下非定常流动特性研究[J]. 农业机械学报,2017, 48(7):127-135.
ZHENG Yuan, CHEN Yujie, ZHANG Rui, et al. Analysis on unsteady stall flow characteristics of axial-flow pump[J]. Transactions of the CSAM, 2017, 48(7): 127-135.(in Chinese)
[7] 董兴华,郭艳磊,毕祯,等.基于CFX与Workbench耦合的轴流泵的内外特性[J]. 排灌机械工程学报, 2015,46(6):488-493.
[8] DONG Xinghua, GUO Yanlei, BI Zhen, et al. Internal and external characteristics of axial flow pump based on CFX and Workbench coupling [J] Journal of drainage and irrigation machinery engineering, 2015,46(6):488-493.(in Chinese)
[9] 程效锐,魏彦强,刘贺, 等. 核主泵叶轮与导叶能量转换的数值计算[J]. 流体机械, 2018, 46(9):46-51.
CHENG Xiaorui,Wei Yanqiang,LIU He,et al. Nume-rical calculation of energy conversion with impeller and guide vanes of a nuclear main pump [J].Fluid machine-ry, 2018, 46(9):46-51.(in Chinese)
[10] WEI H,WEI J,SHU G. Calculation on cylinder pressure fluctuation by using the wave equation in KIVA program[J]. Chinese journal of mechanical engineering,2012,25(2):362-369.
[11] LI D Y,GONG R Z,WANG H J,et al. Dynamic analysis on pressure fluctuation in vaneless region of a pump turbine[J]. Science China technological sciences, 2015, 58(5):813-824.
[12]   
[13] LI P,ZHANG Y T,XIE L Z,et al. Elimination of fuel pressure fluctuation and multi-injection fuel mass deviation of high pressure common-rail fuel injection system[J]. Chinese journal of mechanical engineering, 2015,28(2):294-306.
[14] 张宁波, 汪建晓, 张立平. 空调室外机管路系统的模态仿真分析[J]. 流体机械, 2017,45(2):71-74.
ZHANG Ningbo,WANG Jianxiao,ZHANG Liping. The air conditioner outdoor unit modal simulation analysis of piping system[J]. Fluid machinery, 2017,45(2):71-74.(in Chinese)
[15] LIU SH,SHAO J,WU SF,et al. Numerical simulation of pressure fluctuation in Kaplan turbine[J].Science in China, 2008,51(8):1137-1148.
[16] ZHAO Y,PENG Q,WAN W,et al.Fluid-solid coupling analysis of rock pillar stability for concealed karst cave ahead of a roadway based on catastrophic theory[J]. International journal of mining science and technology,2014,24(6):737-745.
[17] GU C S,WEI B W,XU Z K,et al. Fluid solid coupling model based on endochronic damage for roller compacted concrete dam[J].Journal of Central South University,2013,20(11):3247-3255.
[18] CHENG Y F,LI L D,MAHMOOD S,et al. Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments[J]. Applied mathematics and mechanics,2013,34(11):1421-1432.
[1] 施卫东,*,侯云鹤,周岭,李跃民,薛少辉. 不同级数深井离心泵性能的数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(7): 553-558.
[2] 李强*,李森,燕浩,王道明,夏胜生. 叶片进口边对微型高速离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(7): 587-592.
[3] 袁建平,邓凡杰,张克玉,崔强磊,司乔瑞*. 气液两相流下叶片泵内部流动研究现状[J]. 排灌机械工程学报, 2019, 37(7): 565-573.
[4] 王燕燕,,赵伟国,*,韩向东,,郑英杰,. 基于叶片包角和出口安放角对叶轮的改进设计[J]. 排灌机械工程学报, 2019, 37(7): 574-579.
[5] 庞庆龙,蒋小平*,朱嘉炜,吴国桥,王鑫伟,王莉. 泵腔径向间隙对多级离心泵泵腔内部流场的影响[J]. 排灌机械工程学报, 2019, 37(7): 580-586.
[6] 徐海良,*,周永兴,杨放琼,,吴波,. 进料流量对深海矿石输送设备内流特性影响分析[J]. 排灌机械工程学报, 2019, 37(7): 618-624.
[7] 刘建河,李星光*,许晏铭. 喷针-环形电极配置对感应荷电喷雾的影响[J]. 排灌机械工程学报, 2019, 37(6): 521-527.
[8] 岑春海,潘中永*,王雪豹. 喷水推进器全流道空化流动数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 528-533.
[9] 赵伟国,,潘绪伟,*,宋启策,,李尚升,. 叶片进口边穿孔对离心泵空化性能的影响[J]. 排灌机械工程学报, 2019, 37(6): 461-468.
[10] 杨孙圣,邵珂*,戴韬. 叶片包角对混流泵作透平的特性影响[J]. 排灌机械工程学报, 2019, 37(6): 475-479.
[11] 岳书波,张鸿清*,刁明军,代尚逸. 泄洪闸胸墙压坡段的数值模拟[J]. 排灌机械工程学报, 2019, 37(6): 491-497.
[12] 俞芸芸,周大庆*,戴启璠,梁豪杰,仲子夜. 轴流泵叶轮的三维多参数设计及试验[J]. 排灌机械工程学报, 2019, 37(5): 393-399.
[13] 赵道利*,高诚锋,孙维鹏,郭鹏程,马薇. 泄水锥加长与主轴中心孔补水对水轮机尾水管流态的影响[J]. 排灌机械工程学报, 2019, 37(5): 413-419.
[14] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.
[15] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved