排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (5): 435-440    DOI: 10.3969/j.issn.1674-8530.18.0187
流体工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
侧风对螺旋桨气动特性影响的数值模拟
边若鹏1,昝丙合2,朱建勇3*,何淼2
1. 海军驻保定地区航空军事代表室, 河北 保定 071051;2. 中航工业惠阳航空螺旋桨有限责任公司, 河北 保定 071000;3. 沈阳航空航天大学航空发动机学院, 辽宁 沈阳 110136
Numerical simulations of crosswind effect on aerodynamic characteristics of propeller
BIAN Ruopeng1, ZAN Binghe2, ZHU Jianyong3*, HE Miao2
1. Office of Navy Representative in Baoding District, Baoding, Hebei 071051, China; 2. AVIC Huiyang Aviation Propeller Co. Ltd., Baoding, Hebei 071000, China; 3. Aircraft Engine College, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
 全文: PDF (3918 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究侧风对螺旋桨气动性能的影响,基于滑移网格技术, 使用CFD软件求解非定常不可压流动的N-S方程和S-A湍流模型,数值模拟不同侧风倾角下螺旋桨的气动特性.数值计算结果表明:在侧风条件下,螺旋桨的瞬时气动力,包括拉力、侧向力和扭矩,在旋转一周的过程中呈现周期性非定常变化,并且这种周期性变化随侧风倾角的增大更加明显.将一个周期内的瞬时气动力时均化处理得到时均气动力,时均的拉力、侧向力、扭矩以及效率均随倾角的增大而增大,由于拉力的增加幅度大于扭矩的增加幅度,螺旋桨时均效率从0°倾角的54.3%增加到30°倾角的64.3%.通过分析桨叶表面压力分布得出,螺旋桨桨叶迎风面和背风面的共同作用导致螺旋桨气动力的非定常变化,在螺旋桨旋转过程中,迎风面压力增大和背风面吸力增大导致气动力增大,迎风面压力减小和背风面吸力减小导致气动力减小.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
边若鹏
昝丙合
朱建勇*
何淼
关键词无人机   螺旋桨   侧风   气动特性   压力分布   数值模拟     
Abstract: To study the effect of crosswind on the aerodynamic characteristics of propeller, the aerodynamic characteristics of a propeller were numerically simulated under different crosswind inclinations by solving the N-S equations and S-A turbulence model for unsteady incompressible flows based on sliding mesh technique with CFD software. The numerical results indicate that the instantaneous aerodynamic forces, including thrust, lateral force and torque present a periodic variation in each revolution under crosswind conditions, and this variation becomes more significant with increasing inclination. The time-averaged aerodynamic forces are obtained by averaging these instantaneous aerodynamic forces in each revolution. The time-averaged thrust, lateral force, torque and efficiency increase with enlaring inclination. The efficiency rises to 64.3% at 30? inclination from 53.4% at 0? inclination, because the increase in the thrust is larger than that in the torque. Analysing the pressure distributions on the propeller blade surfaces shows that both the windward and the leeward of the propeller are responsible for the unsteady force. Specially, the higher pressure on the windward and the bigger suction pressure on the leeward lead to the larger force on the propeller. While the smaller pressure on the windward and the smaller suction pressure on the leeward contribute to the smaller force on the propeller.
Key wordsUAV   propeller   crosswind   aerodynamic characteristics   pressure distribution   numerical simulation   
收稿日期: 2018-09-10;
基金资助:国家自然科学基金资助项目(11502012)第一作者简介:边若鹏(1975—),男,河北保定人,学士(zbh8800@163com),主要从事空气螺旋桨设计研究
引用本文:   
边若鹏,昝丙合,朱建勇*等. 侧风对螺旋桨气动特性影响的数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 435-440.
BIAN Ruo-Peng-,ZAN Bing-He-,ZHU Jian-Yong-* et al. Numerical simulations of crosswind effect on aerodynamic characteristics of propeller[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(5): 435-440.
 
[1] XIANG S, LIU Y Q, TONG G, et al. An improved propeller design method for the electric aircraft[J]. Aerospace science and technology, 2018,78:488-493.
[2] CHO J H. Experimental and numerical investigation of the power-on effect for a propeller-driven UAV[J]. Aerospace science and technology, 2014, 36:55-63.
[3] 马庭亮. 侧风对飞机起飞着陆的影响及修正原理[J]. 技术与市场, 2013, 20(11):66-67.
MA Tingliang. Influence of crosswind on takeoff and landing of aircraft and its correction principle [J].Technology and market,2013, 20(11):66-67.(in Chinese)
[4] 胡国才, 刘嘉, 孙建国. 螺旋桨飞机近地飞行时的纵向稳定性[J]. 海军航空工程学院学报, 2009, 24(6):601-604.
HU Guocai, LIU Jia, SUN Jianguo.Longitudinal stability of jet-propeller aircraft during low-altitude flight[J]. Journal of naval aeronautical engineering institute, 2009, 24(6):601-604.(in Chinese)
[5] 曲建清, 宋辉. 无人机总体与起飞性能匹配性设计优化[J]. 飞行力学, 2013, 31(3):225-229.
QU Jianqing, SONG Hui.Design optimization of UAV configuration and takeoff performance[J]. Flight dynamics, 2013, 31(3):225-229.(in Chinese)
[6] 王艳红, 赵文智, 朱怡. 单发螺旋桨飞机平飞角度控制模型的仿真分析[J]. 计算机仿真, 2015, 32(6):71-74.
WANG Yanhong, ZHAO Wenzhi, ZHU Yi. Simulation analysis of angle control model of single propeller-driven aircraft in level flight[J]. Computer simulation, 2015, 32(6):71-74.(in Chinese)
[7] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852.
LI Bo, LIANG Dengwang, HUANG Guoping.Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta aeronautica et astronautica sinica, 2008, 29(4):845-852.(in Chinese)
[8] 李岩,吴志诚,田川公太朗,等. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419. 浏览
LI Yan,WU Zhicheng, TAGAWA Kotaro,et al. Nume-rical simulation on aerodynamic characteristics of vertical axis wind turbine with eccentric rotor structure[J]. Journal of drainage and irrigation machinery engineering, 2018, 36(5): 413-419.(in Chinese)
[9] 石胜庆, 张祥谋, 程钰锋. 偏角对螺旋桨气动性能影响的数值分析[J]. 直升机技术, 2012(4):12-16.
[10] SHI Shengqing, ZHANG Xiangmou, CHENG Yufeng.Numerical study on the effect of the yawing angle to the aerodynamic characteristics of propeller[J]. Helicopter technique, 2012(4):12-16.(in Chinese)
[11] 欧阳绍修, 赵晓霞, 江宗辉,等. 螺旋桨径向力风洞试验方法研究[J]. 实验流体力学, 2012, 26(3):91-94.
OUYANG Shaoxiu, ZHAO Xiaoxia, JIANG Zonghui, et al. The research on wind tunnel test method of propeller′s radial force[J]. Journal of expriments in fluid mechanics, 2012, 26(3):91-94.(in Chinese)
[12] 边若鹏,昝丙合,朱建勇,等. 桨距角对螺旋桨气动特性的影响[J]. 排灌机械工程学报, 2019, 37(4): 336-340. 浏览
BIAN Ruopeng,ZAN Binghe,ZHU Jianyong,et al. Influence of pitch angle on aerodynamic characteristics of propeller[J]. Journal of drainage and irrigation machi-nery engineering, 2019, 37(4): 336-340.(in Chinese)
[13] 孙海涛, 熊鹰, 时立攀. 螺旋桨流固耦合特性的数值模拟[J]. 江苏大学学报(自然科学版), 2015, 36(1):23-29.
SUN Haitao, XIONG Ying, SHI Lipan. Numerical simulation of fluid-structure interaction characteristics for propller[J]. Journal of Jiangsu University(natural science edition), 2015, 36(1):23-29.(in Chinese)
[14] CHEN Y, LIU P, TANG Z, et al. Wind tunnel tests of stratospheric airship counter rotating propellers[J]. Theoretical and applied mechanics letters, 2015, 5(1):58-61.
[1] 杨从新,,张扬,*,钱晨,. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
[2] 赵道利*,高诚锋,孙维鹏,郭鹏程,马薇. 泄水锥加长与主轴中心孔补水对水轮机尾水管流态的影响[J]. 排灌机械工程学报, 2019, 37(5): 413-419.
[3] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.
[4] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
[5] 周以松*,孔繁余,操瑞嘉,孙静如. 屏蔽泵冷却循环回路的热流耦合[J]. 排灌机械工程学报, 2019, 37(4): 296-301.
[6] 柏宇星,*,刘莹莹,孔繁余,夏斌,戴韬. 叶轮外径对混流泵作透平性能的影响[J]. 排灌机械工程学报, 2019, 37(4): 284-288.
[7] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.
[8] 黄剑峰*,杨松,龙立焱,张立翔. 基于重叠网格的水轮机导叶尾流水动力特性数值研究[J]. 排灌机械工程学报, 2019, 37(4): 319-324.
[9] 边若鹏,昝丙合,朱建勇*,何淼. 桨距角对螺旋桨气动特性的影响[J]. 排灌机械工程学报, 2019, 37(4): 336-340.
[10] 徐胜荣,王新坤*,肖思强,樊二东. 射流脉冲三通结构参数数值模拟与优化[J]. 排灌机械工程学报, 2019, 37(3): 270-276.
[11] 李琪飞, 李光贤, 李仁年, 王仁本, 陈雨. 水泵水轮机在水轮机工况的导叶水力矩特性[J]. 排灌机械工程学报, 2019, 37(2): 130-135.
[12] 周大庆, 姜胜文, 陈会向. 液控蝶阀联动的混流泵机组启动过程数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 112-117.
[13] 郭广强, 张人会, 赵万勇, 杨军虎, 黄祺. 浮潜式消防泵启动过程瞬态特性的数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 118-123.
[14] 杨敬江,刘成强,陈汇龙,沈宇翔. 出口环量分布对泵诱导轮性能的影响[J]. 排灌机械工程学报, 2019, 37(1): 18-24.
[15] 陆静, 汤跃, 程俊.. 基于正交试验的斜击式水涡轮优化与分析[J]. 排灌机械工程学报, 2019, 37(1): 38-42.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved