排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (5): 406-412    DOI: 10.3969/j.issn.1674-8530.18.0179
水利水电工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
长距离供水工程空气罐调压塔联合防护水锤
王思琪,俞晓东*,倪尉翔,张健
河海大学水利水电学院, 江苏 南京 210098
Water hammer protection in long-distance water supply project with combined air vessel and surge tanks
WANG Siqi, YU Xiaodong*, NI Weixiang, ZHAGN Jian
College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu 210098, China
 全文: PDF (2244 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 结合某实际供水工程并基于特征线法,建立了包含水泵、管道及水锤防护措施的全系统过渡过程数学模型,模拟了停泵工况下系统的压力变化过程.通过计算发现,由于局部高点内水压力较小,为了保证沿线不出现负压,采用常规空气罐方案时,空气罐体积达到530.00 m3.针对常规空气罐方案体积过大的问题,提出了空气罐双向调压塔联合防护方案和空气罐单向调压塔联合防护方案,并对比分析了2种联合防护方案的效果.结果表明2种联合防护方案都能较大幅度地降低空气罐的体积.空气罐双向调压塔联合防护方案下,空气罐体积降至40.27 m3,但双向调压塔高度受测压管水头控制,水泵扬程较高时导致其高度较高,双向调压塔高达到27.00 m;单向调压塔的高度不受测压管水头限制,联合防护方案下空气罐体积为43.83 m3,但为了保证局部高点不出现负压,需增加沿线单向塔的数量.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王思琪
俞晓东*
倪尉翔
张健
关键词长距离供水工程   水锤   空气罐   双向调压塔   单向调压塔     
Abstract: Based on the method of characteristics(MOC), the mathematical model of an integrated system including the pump, pipeline, and water hammer protective measures is established in terms of a practical water supply project, and the transient pressure variation process in the system is simulated during a pump sudden stopping period. Based on simulations a low pressure exists at the local high elevation site. To avoid a negative pressure in the pipeline if an orderinary air vessel is involved in the system, then its volumme can be as large as 530.00 m3. To solve this problem, two methods, namlely, air vessel-two-way-surge tank and air vessel-one-way-surge tank, are proposed, their protective effectiveness is analyzed and compared. The results show that the volume of air vessel can be significantly reduced by two protective methods proposed. For the air vessel-two-way-surge tank method, the volume of air vessel has been reduced to 40.27 m3, however, its height reaches as high as 27.00 m, because the tank height is controlled not only by the piezometric head but also by the pump head. For the air vessel-one-way-surge tank method, the tank height is not limited by the piezometric head, and the volume of air vessel is reduced to 43.83 m3. Unforatunantely, more tanks are needed to ensure no negative pressure in the pipeline.
Key wordslong-distance water supply project   water hammer   air vessel   surge tank   one-way surge tank   
收稿日期: 2018-08-26;
基金资助:“十三五”国家重点研发计划项目(2016YFC0401810)第一作者简介:王思琪(1994—),女,山东莱阳人,硕士研究生(wangsiqihhu@163com),主要从事长距离输水系统的过渡过程仿真与水锤防护研究
引用本文:   
王思琪,俞晓东*,倪尉翔等. 长距离供水工程空气罐调压塔联合防护水锤[J]. 排灌机械工程学报, 2019, 37(5): 406-412.
WANG Si-Qi,YU Xiao-Dong-*,NI Wei-Xiang et al. Water hammer protection in long-distance water supply project with combined air vessel and surge tanks[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(5): 406-412.
 
[1] WYLIE E B, STREETER V L. Fluid Transients[M]. New York, USA: McGraw-Hill Inc, 1983.
[2] KIM Sang-Gyun, LEE Kye-Bock, KIM Kyung-Yup. Water hammer in the pump-rising pipeline system with an air chamber[J]. Journal of hydrodynamics, 2014,26(6):960-964.
[3] 邓安利,蒋劲,兰刚,等.长距离输水工程停泵水锤的空气罐防护特性[J]. 武汉大学学报(工学版), 2015,48(3):402-406.
DENG Anli, JIANG Jin, LAN Gang, et al. Research on protective properties of air vessel for pump-stopping water hammer protection of long distance pipelines[J]. Engineering journal of Wuhan University, 2015,48(3):402-406.(in Chinese)
[4] 刘梅清,刘光临,刘时芳. 空气罐对长距离输水管道水锤的预防效用[J]. 中国给水排水, 2000,16(12):36-38.
LIU Meiqing, LIU Guanglin, LIU Shifang. Protection study on water hammer of long-distance water pipelines by air vessel[J]. China water and wastewater, 2000,16(12):36-38.(in Chinese)
[5] 黄玉毅,李建刚,符向前,等. 长距离输水工程停泵水锤的空气罐与气阀防护比较研究[J]. 中国农村水利水电, 2014(8):186-188,192.
[6] HUANG Yuyi, LI Jiangang, FU Xiangqian, et al. Research on the comparison of air vessel and air valve on pump-stopping water hammer protection of long-distance pipeline[J]. China rural water and hydropower, 2014(8):186-188,192.(in Chinese)
[7] STEPHENSON D. Simple guide for design of air vessels for water hammer protection of pumping lines[J]. Journal of hydraulic engineering, 2002,128(8):792-797.
[8] 于永海,王金星,秦晓峰. 空气罐水锤防护的并联泵系统水力振动分析[J]. 排灌机械工程学报, 2013,31(11):958-963. 浏览
YU Yonghai, WANG Jinxing, QIN Xiaofeng. Hydraulic vibration analysis of parallel pump system with air surge tank for water hammer protection[J]. Journal of drainage and irrigation machinery engineering, 2013,31(11):958-963.(in Chinese)
[9] 何城,张健,郑源,等. 卧式空气罐的水锤防护性能[J]. 排灌机械工程学报, 2017,35(2):138-143,151. 浏览
HE Cheng, ZHANG Jian, ZHENG Yuan, et al. Protective properties of horizontal air vessel for water hammer.[J]. Journal of drainage and irrigation machinery engineering, 2017,35(2):138-143,151.(in Chinese)
[10] 杨开林. 电站与泵站中的水力瞬变及调节[M]. 北京:中国水利水电出版社, 1999.
[11] 蒋梦露,张健,罗浩,等. 气囊式空气罐水锤防护研究[J]. 南水北调与水利科技, 2015,13(4):713-716,725.
JIANG Menglu, ZHANG Jian, LUO Hao, et al. Research on water hammer protection of pneumatic tank[J]. South-to-north water transfers and water science and technology, 2015,13(4):713-716,725.(in Chinese)
[12] 杨玉思,徐艳艳,羡巨智. 长距离高扬程多起伏输水管道水锤防护的研究[J]. 给水排水, 2009,35(4):108-111.
YANG Yusi, XU Yanyan, XIAN Juzhi. Research on water hammer prevention in high-lift, hilly and long dista-nce water transmission pipeline[J]. Water and waste-water engineering, 2009,35(4):108-111.(in Chinese)
[13] 张健,索丽生,胡建永,等. 长距离供水工程单向塔设置分析[J]. 水力发电学报, 2011,30(1):49-56.
ZHAGN Jian, SUO Lisheng, HU Jianyong, et al. Study on water hammer control by one-way surge tank in long-distance water-supply project[J]. Journal of hydroele-ctric engineering, 2011,30(1):49-56.(in Chinese)
[14] 梁兴. 基于正交试验的单向调压塔结构优化研究[J]. 给水排水, 2015,41(2):97-100.
LIANG Xing. Structural optimization of one-way surge tank based on the orthogonal test[J]. Water and wastewater engineering, 2015,41(2):97-100.(in Chinese)
[1] 何城, 张健, 郑源, 王焰康, 何东阳. 卧式空气罐的水锤防护性能[J]. 排灌机械工程学报, 2017, 35(2): 138-143.
[2] 李小周, 朱满林, 陶灿. 空气阀型式对压力管道水锤防护的影响[J]. 排灌机械工程学报, 2015, 33(7): 599-605.
[3] 易万爽, 蒋劲, 李东东, 兰刚. 压力波动预止阀优化开阀方案[J]. 排灌机械工程学报, 2015, 33(2): 133-137.
[4] 薛宏林, 张驰, 李彦军, 谢山峰. 立式混流泵站停泵两阶段关阀 过渡过程分析[J]. 排灌机械工程学报, 2015, 33(11): 953-959.
[5] 王玲, 王福军, 李雪楠, 邹志超. 压力波动预止阀关闭特性对泵站水锤的影响[J]. 排灌机械工程学报, 2014, 32(10): 871-876.
[6] 赵飞, 符杰, 宋文武, 王春志. 七流道球型止回阀的结构设计及性能分析[J]. 排灌机械工程学报, 2013, 31(8): 708-712.
[7] 王玲, 王福军, 张嘉辰, 李雪楠. 压力波动预止阀对泵站水锤的影响[J]. 排灌机械工程学报, 2013, 31(5): 413-417.
[8] 石喜, 吕宏兴, 朱德兰, 孙斌, 曹彪. 枝状管网水力瞬变工况的试验与数值模拟[J]. 排灌机械工程学报, 2013, 31(5): 406-412.
[9] 于永海, 王金星, 秦晓峰. 空气罐水锤防护的并联泵系统水力振动分析[J]. 排灌机械工程学报, 2013, 31(11): 958-963.
[10] 刘梅清, 梁兴, 刘志勇, 林琦, 吴远为. 长管道事故停泵水锤现场测试与信号分析[J]. 排灌机械工程学报, 2012, 30(3): 249-253.
[11] 刘竹青, 毕慧丽, 王福军. 空气阀在有压输水管路中的水锤防护作用[J]. 排灌机械工程学报, 2011, 29(4): 333-337.
[12] 姚青云;李志敏. 事故停泵水锤对压力管道的影响[J]. 排灌机械工程学报, 2006, 24(6): 45-47.
[13] 梁兴;刘梅清;张进国;申一洲;林琦. 空气罐对输水管道水锤的防护研究[J]. 排灌机械工程学报, 2005, 23(6): 16-18.
[14] 罗伟;陈坚. 停泵水锤的简易算法[J]. 排灌机械工程学报, 2005, 23(2): 16-19.
[15] 蒋桂林;周龙才;冯军;李康波. 惠州深能源丰达电厂取水工程水锤计算与防护[J]. 排灌机械工程学报, 2005, 23(1): 15-18.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved