排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (5): 381-386    DOI: 10.3969/j.issn.1674-8530.17.0165
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
专用堆型对应的核主泵正反转流动数值模拟
杨从新1,2,张扬1,2*,钱晨1,2
1. 兰州理工大学能源与动力工程学院, 甘肃 兰州 730050; 2. 甘肃省流体机械及系统重点实验室, 甘肃 兰州 730050
Numerical simulation of flow in coolant pump for special nuclear reactor under positive and negative rotational speeds
YANG Congxin1,2, ZHANG Yang1,2*, QIAN Chen1,2
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Key Laboratory of Fluid Machinery and Systems of Gansu Province, Lanzhou, Gansu 730050, China
 全文: PDF (6181 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究核主泵在定转速工况下的正反转特性,采用相似换算法,基于SST k-ω 湍流模型与块结构化网格,对缩比系数为0.5 的核主泵模型泵进行数值模拟.定义流量从泵进口流向出口为“+”,反之为“-”.在正转工况下分别对-0.8Qd到+2.0Qd流量范围内的16个工况点进行计算、反转工况下对-1.4Qd到+1.0Qd流量范围内的14个工况点进行计算,得到其全特性曲线.计算结果表明:在相同流量工况下,核主泵正转时的扬程与转矩总是高于反转时的扬程与转矩,叶轮扬程与泵扬程存在不同的变化趋势;在正转工况下,在 -0.1Qd到+0.4Qd流量范围内,叶轮扬程曲线呈现反“N”型变化趋势;在反转工况下,在-0.4Qd到+0.1Qd流量范围内,叶轮扬程曲线呈一个明显的“V”型变化趋势;叶轮出口处产生二次流回流现象,这是正转小流量工况下叶轮扬程降低的主要原因,而叶轮与导叶之间过渡段区域内的环形高速带和叶轮流道内的大尺度涡是反转小流量工况下叶轮扬程降低的主要原因.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨从新
张扬
*
钱晨
关键词核主泵   正反转   SST k-ω湍流模型   全特性   数值模拟     
Abstract: To identify the characteristics of reactor coolant pump(RCP)under positive and negative constant speeds, numerical simulations of the flow in the model coolant pump scaled down from the real pump with 0.5 scaling factor based on the pump affinity laws were carried out by using the SST k-ω turbulence model and structured-mesh. The flow rate was defined as “+” when the fluid flows into the pump from the inlet, otherwise, it was defined as “-”. The complete characteristic curves were predicted respectively with 16 operating points in the flow range of -0.8Qd - +2.0Qd under positive rotational speed, and 14 operating conditions in the flow range of -1.4Qd - +1.0Qd under negative rotational speed. The results show that at the same flow rate, the head and torque of the RCP under positive rotational speed are always higher than that under negative rotational speed. The impeller head and pump head have different variation trends. The impeller head curve is in upside-down “N” shape as the flow rate in the range of -0.1Qd - +0.4Qd under positive rotational speed, but it is in “V” shape when the flow rate is in the range of -0.4Qd - +0.1Qd under negative rotational speed. The internal flow results show that there is a secondary flow phenomenon in the impeller outlet. This flow pattern is mainly responsible for the drop in the impeller head under low flow rate conditions under positive rotational speed. The large-scale vortices in the impeller and the high-velocity region between the impeller and the radial diffuser are the main reason for the drop in the impeller head curve with negative rotational speed under low flow rate conditions.
Key wordsreactor coolant pump   positive and negative rotational speed   SST k-ω turbulence model   complete characteristics   numerical simulation   
收稿日期: 2017-07-13;
基金资助:国家自然科学基金资助项目(51469013)第一作者简介:杨从新(1964—),男,陕西兴平人,教授,博士生导师(ycxwind@163com),主要从事流体机械的设计与研究
引用本文:   
杨从新,,张扬等. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
YANG Cong-Xin-,,ZHANG Yang- et al. Numerical simulation of flow in coolant pump for special nuclear reactor under positive and negative rotational speeds[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(5): 381-386.
 
[1] 杨从新, 王秀勇, 程效锐,等. 基于CFD计算的AP1400示范堆核电主泵水力模型研发[C]//全国水力机械及其系统学术会议,2011.
[2] 单玉姣. 基于CFD的1000MW级核主泵水力模型模化计算方法研究[D]. 大连:大连理工大学, 2010.
[3] 秦杰. 核主泵过流部件水力设计与内部流场数值模拟[D]. 大连:大连理工大学, 2010.
[4] 王俊, 张永超, 王达,等. 混流式核主泵内部复杂流动结构分析[J]. 流体机械, 2017, 45(10):58-63.
WANG Jun, ZHANG Yongchao, WANG Da, et al. Analysis of internal flow structures in a mixed flow nuclear main pump[J]. Fluid machinery, 2017, 45(10): 58-63.(in Chinese)
[5] 杜媛英, 刘琳, 刘刚,等. 非定常大涡模拟下混流泵叶轮的轴向力研究[J]. 流体机械, 2016, 44(11):15-19.
DU Yuanying, LIU Lin, LIU Gang, et al. Study of axial force on Impeller of mixed-flow pump by unsteady large eddy simulation[J]. Fluid machinery, 2016, 44(11): 15-19.(in Chinese)
[6] 王鹏, 袁寿其, 王秀礼,等. 大流量工况下核主泵内部不稳定特性分析[J]. 振动与冲击, 2015, 34(9):196-201.
WANG Peng, YUAN Shouqi, WANG Xiuli, et al. Analysis on internal unsteady characteristics of nuclear main pump under large flow condition[J]. Journal of vibration and shock, 2015, 34(9): 196-201.(in Chinese)
[7] 付强, 龙云, 朱荣生,等. 失水事故工况下主泵全特性数值分析[J]. 核动力工程, 2014(2):121-126.
[8] FU Qiang, LONG Yun, ZHU Rongsheng, et al. Numerical analysis on complete characteristics of LOCA reactor coolant pump[J]. Nuclear power engineering, 2014(2): 121-126.(in Chinese)
[9] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社, 2011.
[10] 钱卫东. AP 1400核主泵的四象限特性试验研究[J]. 水泵技术, 2015(5):7-12.
[11]   QIAN Weidong. Experimental study on four quadrant characteristics of AP 1400 nuclear main pump[J]. Pump technology, 2015(5): 7-12.(in Chinese)
[12] ZHOU J Z. Experimental study on characteristic curves of restoring forces of populus alba var. pyramidalis[J]. Forestry studies in China, 2011, 13(4):315-320.
[13] KNIERIM C, BAUMGARTEN S, FRITZ J, et al. Design process for an advanced reactor coolant pump for a 1400 MW nuclear power plant[C]//Proceedings of the ASME 2005 Fluids Engineering Division Summer Meeting, 2005:1363-1369.
[1] 赵道利*,高诚锋,孙维鹏,郭鹏程,马薇. 泄水锥加长与主轴中心孔补水对水轮机尾水管流态的影响[J]. 排灌机械工程学报, 2019, 37(5): 413-419.
[2] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.
[3] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
[4] 边若鹏,昝丙合,朱建勇*,何淼. 侧风对螺旋桨气动特性影响的数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 435-440.
[5] 周以松*,孔繁余,操瑞嘉,孙静如. 屏蔽泵冷却循环回路的热流耦合[J]. 排灌机械工程学报, 2019, 37(4): 296-301.
[6] 柏宇星,*,刘莹莹,孔繁余,夏斌,戴韬. 叶轮外径对混流泵作透平性能的影响[J]. 排灌机械工程学报, 2019, 37(4): 284-288.
[7] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.
[8] 黄剑峰*,杨松,龙立焱,张立翔. 基于重叠网格的水轮机导叶尾流水动力特性数值研究[J]. 排灌机械工程学报, 2019, 37(4): 319-324.
[9] 边若鹏,昝丙合,朱建勇*,何淼. 桨距角对螺旋桨气动特性的影响[J]. 排灌机械工程学报, 2019, 37(4): 336-340.
[10] 徐胜荣,王新坤*,肖思强,樊二东. 射流脉冲三通结构参数数值模拟与优化[J]. 排灌机械工程学报, 2019, 37(3): 270-276.
[11] 周大庆, 姜胜文, 陈会向. 液控蝶阀联动的混流泵机组启动过程数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 112-117.
[12] 郭广强, 张人会, 赵万勇, 杨军虎, 黄祺. 浮潜式消防泵启动过程瞬态特性的数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 118-123.
[13] 王巍, 王亚云, 唐滔, 林茵, 王晓放. 反应堆冷却剂模型泵空化性能数值模拟与试验[J]. 排灌机械工程学报, 2019, 37(2): 100-105.
[14] 李琪飞, 李光贤, 李仁年, 王仁本, 陈雨. 水泵水轮机在水轮机工况的导叶水力矩特性[J]. 排灌机械工程学报, 2019, 37(2): 130-135.
[15] 杨敬江,刘成强,陈汇龙,沈宇翔. 出口环量分布对泵诱导轮性能的影响[J]. 排灌机械工程学报, 2019, 37(1): 18-24.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved