排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (4): 319-324    DOI: 10.3969/j.issn.1674-8530.17.0207
水利水电工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于重叠网格的水轮机导叶尾流水动力特性数值研究
黄剑峰1*,杨松1,龙立焱1,张立翔2
1. 云南农业大学水利学院, 云南 昆明 650201; 2. 昆明理工大学工程力学系, 云南 昆明 650500
Numerical study on dynamic characteristics of flow around a vanes in the channel based on overset meshes
HUANG Jianfeng1*,YANG Song1,LONG Liyan1,ZHANG Lixiang2
1. Faculty of Water Conservation, Yunnan Agricultural University, Kunming, Yunnan 650201, China; 2. Department of Engineering Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
 全文: PDF (1708 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究水轮机导叶运动对水轮机暂态过程中叶栅流场的流固耦合动态特性影响,基于二维时均瞬态N-S方程和标准k-ε湍流模型,分别应用ANSYS FLUENT软件中的重叠网格方法和动网格方法,对高雷诺数下槽道内水轮机单个导叶在均匀来流条件下模拟水流绕流翼型叶片的导叶匀速关闭运动过程.结果表明:2种方法得到的关闭过程中叶后不均匀流场动态水力特性呈现出强非线性,导叶的升力系数、阻力系数随时间的变化规律较为吻合,槽道内各典型时刻的流场压力、尾涡结构、湍流强度分布特征也基本一致.但重叠网格方法的网格数量约为动网格方法的1/3,计算耗时约为动网格方法的1/4,说明重叠网格方法在计算效率方面具有比动网格方法更好的优越性.研究表明2种方法都可较好地模拟导叶动态绕流问题,但对某些复杂非线性动边界流固耦合问题进行非定常流模拟时可以优先选择重叠网格方法,2种方法都具有较高工程应用价值.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄剑峰*
杨松
龙立焱
张立翔
关键词水轮机   导叶绕流   重叠网格   动网格   数值模拟     
Abstract: Numerical simulation of turbulent flow around a vane in the channel with guide vane closure based on the two-dimensional transient N-S equation was conducted with the standard k-ε turbulence model. In order to study the dynamic effect of the cascade flow field on the fluid-structure interaction occurring between the flow and guide vanes in the transient process of hydro-turbine, the overset meshes and dynamic mesh technology were used in such an unsteady flow problem. The dynamic characteristics of non-uniform flow field show strong nonlinearity under the two methods. The lift and drag coefficients of a guide vane are in good agreement with time. The pressure, vortex structure and turbulence intensity distribution in the channel at the typical time are basically the same. But the mesh number of the overset mesh is about 1/3 of the dynamic mesh, and the computation time is about 1/4 of the dynamic mesh. It is shown that the overset mesh method has better advantages than the dynamic mesh method in terms of computational efficiency. The results show that the two methods can well simulate the dynamic flow around a guide vane. But for some complicated nonlinear dynamic boundary fluid-structure interaction problems, the overset mesh method is preferred. The two methods are of higher engineering application value.
Key wordshydro-turbine   flow around a vane   overset mesh   dynamic mesh   numerical simulation   
收稿日期: 2017-09-07;
引用本文:   
黄剑峰*,杨松,龙立焱等. 基于重叠网格的水轮机导叶尾流水动力特性数值研究[J]. 排灌机械工程学报, 2019, 37(4): 319-324.
HUANG Jian-Feng-*,YANG Song-,LONG Li-Yan- et al. Numerical study on dynamic characteristics of flow around a vanes in the channel based on overset meshes[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(4): 319-324.
 
[1] 李鹏,高振勋,蒋崇文.重叠网格方法的研究进展[J]. 力学与实践,2014,36(5):551-565.
LI Peng,GAO Zhenxun, JIANG Chongwen. The progress of the overlapping grid techniques [J].Mechanics in engineering, 2014,36(5):551-565.(in Chinese)
[2] 张来平,邓小刚,张涵信.动网格生成技术及非定常计算方法进展综述[J]. 力学进展,2010,40(4):424-447.
ZHANG Laiping,DENG Xiaogang,ZHANG Hanxin. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in mechanics, 2010, 40(4):424-447.(in Chinese)
[3] 黄剑峰,张立翔,杨松,等.水轮机槽道内导叶动态绕流水力特性大涡模拟分析[J].农业工程学报, 2017,33(4): 125-130.
HUANG Jianfeng, ZHANG Lixiang, YANG Song, et al. Analysis on hydraulic characteristics of dynamic flow around vane in hydro-turbine channel using large eddy simulation[J]. Transactions of the CSAE, 2017, 33(4): 125-130.(in Chinese)
[4] 张德良.计算流体力学教程[M].北京:高等教育出版社,2010.
[5] STEGER J L, DOUGHERTY F C, BENEK J A. A chimera grid scheme[C]// Mini Symposium on Advances in Grid Generation, ASME, 1982.
[6] 徐文灿,胡俊.计算流体力学(上)[M].北京:北京理工大学出版社,2011.
[7] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
[8] 阎超,于剑,徐晶磊,等. CFD 模拟方法的发展成就与展望[J]. 力学进展,2011,41(5):562-589.
YAN Chao, YU Jian, XU Jinglei, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in mechanics, 2011, 41(5):562-589.(in Chinese)
[9] CARBONNE L, WINKLER N, EFRAIMSSON G. Use of full coupling of aerodynamics and vehicle dynamics for numerical simulation of the crosswind stability of ground vehicles[J].SAE Int J Commer Veh, 2016, 9(2):359-370.
[10] THANHTOAN T, DONGHYUN K, JINSEOP S. Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion[J]. Energies, 2014(7):5011-5026.
[11] KOBLITZ A R, LOVETT S, NIKIFORAKIS N, et al. Direct numerical simulation of particulate flows with an overset grid method[J]. Journal of computational physics, 2017, 343:414-431.
[12] VREMAN A W. A staggered overset grid method for resolved simulation of incompressible flow around moving spheres[J]. Journal of computational physics, 2017, 333:269-296.
[13] ZHAO Ming, CAO Yihua. Numerical simulation of rotor flow field based on overset grids and several spatial and temporal discretization schemes[J]. Chinese journal of aeronautics, 2012, 25:155-163.
[14] MARCO Agostino De, MANCINI Simone, MIRANDA Salvatore, et al. Experimental and numerical hydrody-namic analysis of a stepped planing hull[J]. Applied ocean research, 2017, 64:135-154.
[15] 王云海,钱凯,韩景龙. 不同结构垂直轴风力机叶片流动非定常数值模拟[J].太阳能学报, 2013,34(10):1697-1701.
WANG Yunhai,QIAN Kai,HAN Jinglong. Unsteady numerical simulation on rotated flow of different vertical axis wind turbine shape[J]. Acta energiae solaris sinica, 2013, 34(10):1697-1701.(in Chinese)
[16] 陈荣钱,王旭,尤延铖. 短舱对螺旋桨滑流影响的IDDES数值模拟[J].航空学报,2016,37(6):1851-1860.
CHEN Rongqian,WANG Xu,YOU Yancheng. Numerical simulation of nacelle′s effects on propeller slipstream based on IDDES model[J]. Acta aeronautica et astronautica sinica, 2016, 37(6):1851-1860.(in Chinese)
[17] 马山,葛文澎,段文洋. 基于重叠网格的C11集装箱船自由衰减横摇模拟[J]. 华中科技大学学报(自然科学版), 2017, 45(5):34-39.
MA Shan,GE Wenpeng, DUAN Wenyang. Simulation of free decay roll for C11 container ship based on overset grid[J]. J Huazhong Univ of Sci &Tech(natural scien-ce edition), 2017, 45(5): 34-39.(in Chinese)
[18] 徐丽,翁培奋,吴泉军,等. 用鲁棒Riemann求解器和运动重叠网格计算旋翼粘性绕流[J]. 计算力学学报,2014,31(4):526-531.
XU Li, WENG Peifeng, WU Quanjun, et al. A robust Riemann solver and moving overset grids for visous flow computation of rotors[J].Chinese journal of computational mechanics, 2014,31(4):526-531.(in Chinese)
[19] 赵发明, 高成君, 夏琼. 重叠网格在船舶CFD 中的应用研究[J]. 船舶力学,2011,15(4):332-341.
ZHAO Faming, GAO Chengjun, XIA Qiong. Overlap grid research on the application of ship CFD[J]. Journal of ship mechanics, 2011, 15(4):332-341.(in Chinese)
[20] 舒朝晖,段亚雄,童泽昊,等.采用不同湍流模型计算贯流风机内流场的比较分析[J].流体机械,2018,46(2):19-23.
SHU Zhaohui, DUAN Yaxiong, TONG Zehao, et al. Comparsion of turbulence models on calculation of risner flow field of the cross flow fan [J]. Fluid machinery, 2018, 46(2): 19-23.(in Chinese)
[1] 杨从新,,张扬,*,钱晨,. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
[2] 赵道利*,高诚锋,孙维鹏,郭鹏程,马薇. 泄水锥加长与主轴中心孔补水对水轮机尾水管流态的影响[J]. 排灌机械工程学报, 2019, 37(5): 413-419.
[3] 江伟*,蒋婷, 朱相源. 余热利用换热器硫酸和水蒸气耦合凝结数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 420-426.
[4] 张凌峰,孙见君*,马晨波,张玉言. 一种钠冷快堆核主泵动静压导轴承间隙流体动力特性分析[J]. 排灌机械工程学报, 2019, 37(5): 427-434.
[5] 边若鹏,昝丙合,朱建勇*,何淼. 侧风对螺旋桨气动特性影响的数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 435-440.
[6] 周以松*,孔繁余,操瑞嘉,孙静如. 屏蔽泵冷却循环回路的热流耦合[J]. 排灌机械工程学报, 2019, 37(4): 296-301.
[7] 柏宇星,*,刘莹莹,孔繁余,夏斌,戴韬. 叶轮外径对混流泵作透平性能的影响[J]. 排灌机械工程学报, 2019, 37(4): 284-288.
[8] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.
[9] 边若鹏,昝丙合,朱建勇*,何淼. 桨距角对螺旋桨气动特性的影响[J]. 排灌机械工程学报, 2019, 37(4): 336-340.
[10] 徐胜荣,王新坤*,肖思强,樊二东. 射流脉冲三通结构参数数值模拟与优化[J]. 排灌机械工程学报, 2019, 37(3): 270-276.
[11] 李琪飞, 李光贤, 李仁年, 王仁本, 陈雨. 水泵水轮机在水轮机工况的导叶水力矩特性[J]. 排灌机械工程学报, 2019, 37(2): 130-135.
[12] 周大庆, 姜胜文, 陈会向. 液控蝶阀联动的混流泵机组启动过程数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 112-117.
[13] 郭广强, 张人会, 赵万勇, 杨军虎, 黄祺. 浮潜式消防泵启动过程瞬态特性的数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 118-123.
[14] 杨敬江,刘成强,陈汇龙,沈宇翔. 出口环量分布对泵诱导轮性能的影响[J]. 排灌机械工程学报, 2019, 37(1): 18-24.
[15] 陆静, 汤跃, 程俊.. 基于正交试验的斜击式水涡轮优化与分析[J]. 排灌机械工程学报, 2019, 37(1): 38-42.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved