排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (3): 224-231    DOI: 10.3969/j.issn.1674-8530.17.0159
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
不同航速下喷水推进器压力脉动分析
孟凯旋*,潘中永,王雪豹
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Analysis of pressure fluctuation of water jet propellerunder different ship speeds
MENG Kaixuan*, PAN Zhongyong, WANG Xuebao
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (3859 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了了解喷水推进器内部压力脉动特性,以对旋轴流式喷水推进器为研究对象,基于计算流体动力学CFD方法,采用雷诺时均法并引入SST k-ω 湍流模型使方程封闭,对喷水推进器进行设计工况下的非定常数值模拟.经网格无关性检验后,计算得到的推进器功率与扬程的设计值基本一致.在喷水推进器进水流道与首级叶轮之间、两级叶轮间隙之间、次级叶轮与导叶间设置监测点,监测不同位置的压力脉动数据,得到各监测点的时域图和频域图,并对各监测点的压力脉动特性进行对比分析.以设计工况下的喷水推进器相同位置处压力脉动作为参照,对比分析了不同航速下推进器各监测点处脉动分布情况.结果表明:推进器首级叶轮对其进口处压力脉动作用较大,次级叶轮对两级叶轮间隙处脉动影响较大;在低航速下,导叶对次级叶轮出口处脉动影响较大;沿轴线方向,喷水推进器两级叶轮间隙处脉动的幅值最大,在高航速下,次级叶轮出口处脉动幅值增大且变化剧烈.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟凯旋*
潘中永
王雪豹
关键词压力脉动   喷水推进器   非定常计算   航速     
Abstract: In order to understand the internal pressure pulsation characteristics of the water jet propeller, the contra axial water jet propeller is taken as the object of study and based on the computational fluid dynamics(CFD)method with the SST k-ω turbulence model is used to close the equations.A mesh independence analysis shows that the calculated power and head are well consistent with the design data. In waterjet inlet and first impeller, two stage impeller clearance between the impeller and the diffuser and the secondary impeller set between the monitoring points, monitoring the pressure data in different positions. The time domain and frequency domain diagrams of each monitoring point are obtained, and the pressure fluctuation characteristics of each monitoring point are compared and analyzed. Under the design conditions, according to the pressure pulsation of the water jet propeller at the same design position, the pulsation distribution of the propeller at different speeds is compared and analyzed. The results show: The first impeller of the propeller mainly affects the pressure fluctuation at its inlet,and the secondary impeller mainly affects the pressure fluctuation at the two-stage impeller clearance; at low ship speed, the vane mainly affects the pressure pulsation at the secondary impeller exit; in the axial direction of the propeller,due to the two-stage impeller counter-rotation,the amplitude of the pressure pulsation changes the most. At high ship speeds, the pressure fluctuation between the secondary impeller and the vane changes drastically
Key wordspressure fluctuation   water-jet propeller   unsteady calculation   ship speed   
收稿日期: 2017-07-07;
基金资助:江苏省自然科学基金资助项目(BK20151342);国家自然科学基金资助项目(51879120)
引用本文:   
孟凯旋*,潘中永,王雪豹. 不同航速下喷水推进器压力脉动分析[J]. 排灌机械工程学报, 2019, 37(3): 224-231.
MENG Kai-Xuan-*,PAN Zhong-Yong,WANG Xue-Bao. Analysis of pressure fluctuation of water jet propellerunder different ship speeds[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(3): 224-231.
 
[1] 王立祥, 施丹. 具有巨大潜在市场的喷水推进技术[J]. 上海造船, 2000(2):42-48.
[2] WANG Lixiang, SHI Dan. Water jet propulsion technology with huge potential market[J]. Shanghai shipbuilding, 2000(2):42-48.(in Chinese)
[3] PARK W G, YUN H S, CHUN H H, et al. Numerical flow simulation of flush type intake duct of waterjet[J]. Ocean engineering, 2005,32(17):2107-2120.
[4] 金平仲. 船舶喷水推进[M]. 北京:国防工业出版社, 1986.
[5] PARK W G, JANG H J, CHUN H H, et al. Numerical flow and performance analysis of waterjet propulsion system[J]. Ocean engineering, 2005,32(14):1740-1761.
[6] 王立祥. 喷水推进及喷水推进泵[J]. 通用机械, 2007(10):12-15.
[7] WANG Lixiang. Water jet propulsion and water jet pump[J]. General machinery, 2007(10):12-15.(in Chinese)
[8] 倪永燕, 吴涛涛. 泵喷水推进器分析与设计改进[J]. 船海工程, 2012,41(5):61-63,67.
NI Yongyan, WU Taotao. Analysis and improved design for the water-jet propulsor[J]. Ship and ocean engineering, 2012,41(5):61-63,67.(in Chinese)
[9] JOHN A. Marine waterjet propulsion[J]. Transactions of Society of Naval Architects and Marine Engineers, 1993,101:275-335.
[10] SPENCE R, AMARAL-TEIXEIRA J. A CFD parame-tric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & fluids, 2009,38(6):1243-1257.
[11] BERTEN S, DUPONT P, FABRE L, et al. Experimental investigation of flow instabilities and rotating stall in a high-energy centrifugal pump stage[C]//Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting, 2009:505-513.
[12] 常书平, 王永生, 魏应三,等. 喷水推进器内非定常压力脉动特性[J]. 江苏大学学报(自然科学版), 2012, 33(5):522-527.
CHANG Shuping, WANG Yongsheng, WEI Yingsan, et al. Pressure fluctuation of unsteady flow in waterjet[J]. Journal of Jiangsu University(natural science edition), 2012, 33(5):522-527.(in Chinese)
[13] FURUKAWA A, SHIGEMITSU T, WATANABE S. Performance test and flow measurement of contra-rotating axial flow pump[J]. Journal of thermal science, 2007,16(1):7-13.
[14] TAKAI T, KANDASAMY M, STERN F. Verification and validation study of URANS simulations for an axial waterjet propelled large high-speed ship[J]. Journal of marine science & technology, 2011,16(4):434-447.
[15] 刘承江, 王永生, 张志宏,等. 喷水推进器推力的CFD计算方法研究[J]. 计算力学学报, 2008,25(6):927-931.
LIU Chengjiang, WANG Yongsheng, ZHANG Zhihong, et al. Research on computational methods of waterjet thrust using CFD[J]. Chinese journal of computational mechanics, 2008,25(6):927-931.(in Chinese)
[1] 余昊谦*,王洋,韩亚文,胡日新,汤海涛,汪群. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306.
[2] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.
[3] 袁寿其,黄茜*,张金凤,张霞. 叶片出口角对化工离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(3): 185-191.
[4] 石海峡,杨亚飞,李跃,许巍. 蜗壳式多级泵首级叶轮切割压力脉动特性[J]. 排灌机械工程学报, 2019, 37(1): 7-12.
[5] 李琪飞,*, 王源凯, 刘超, 张建勋, 张正杰, 王仁本. 混流式水泵水轮机驼峰区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(6): 461-466.
[6] 陈杰, 王勇, 刘厚林, 邵昌, 张翔*. 超低比转数离心泵的内部流动及非定常特性[J]. 排灌机械工程学报, 2018, 36(5): 377-383.
[7] 韩伟,, 李雪峰,*, 苏敏, 李仁年,, 陈昊,. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
[8] 何乃昌, 谈明高*, 刘厚林, 黄鑫, 吴贤芳. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
[9] 苏少华,, 刘竹青,*. 载荷分布对导叶式混流泵水力性能影响[J]. 排灌机械工程学报, 2018, 36(12): 1233-1239.
[10] 张帆, 张金凤*, 张霞, 袁寿其, 李亚林, 谢立恒. 基于全流场的泵装置出水流道内流特性分析[J]. 排灌机械工程学报, 2018, 36(12): 1246-1251.
[11] 蔡晓彤, 施卫东*, 张德胜, 张俊杰, 石磊. 基于直接边界元法的潜水排污泵内流噪声数值模拟[J]. 排灌机械工程学报, 2018, 36(12): 1264-1269.
[12] 李琪飞,, 张震, 李仁年,, 宋启策, 张建勋. 带MGV装置水泵水轮机无叶区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(12): 1270-1275.
[13] 高波1, 杜文强1, 杨丽1, 张宁1, 王浩宇1, 袁霄2. 蜗壳面积变化规律对低比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(9): 749-.
[14] 季磊磊, 李伟, 施卫东, 邵佩佩, 蒋小平. 叶片数对混流泵内部非定常压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(8): 666-.
[15] 张琳, 施卫东, 张德胜, 石磊. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved