排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (3): 211-215    DOI: 10.3969/j.issn.1674-8530.17.0112
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于热流固耦合的LNG低温潜液泵转子部件模态分析
张智伟1,施卫东2*,张德胜1,陈宗贺1,黄俊1
1. 江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013; 2. 南通大学机械工程学院, 江苏 南通 226019
Modal analysis of rotor parts of LNG low temperature submersible pump based on thermo-fluid-structure coupling
ZHANG Zhiwei1,SHI Weidong2*,ZHANG Desheng1,CHEN Zonghe1,HUANG Jun1
1. National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. School of Mechanical Engineering, Nantong University, Nantong, Jiangsu 226019, China
 全文: PDF (2843 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 利用UG对LNG潜液泵进行三维造型,再以ANSYS Workbench为平台,对LNG低温潜液泵的转子部件进行热流固耦合计算,得出流场对固体结构部分的热流固耦合力,把热流固耦合力作为预应力添加到转子部件上.分别对转子部件进行无预应力和有预应力作用下的模态分析,基于计算结果,提取了转子部件的前10阶模态,并把2种情况下的模态进行比较.结果表明:除了七阶、八阶振动为轴的摆动,其他各阶的振动变形都表现在叶轮上;添加预应力之后,转子部件的各阶振型没有发生变化,但每一阶的固有频率都有轻微的变化,预应力对转子部件各阶固有频率的影响很小;九阶和十阶的固有频率比较接近泵的3倍叶频,有发生共振的危险,需要对转子部件进行优化设计,使前3倍叶频都能远离各阶固有频率,从而避免泵在运行过程中发生共振;在预应力的作用下,转子部件的各阶振幅也都有小幅度的变化.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张智伟
施卫东*
张德胜
陈宗贺
黄俊
关键词LNG低温潜液泵   热流固耦合   振幅   模态分析   固有频率     
Abstract: The LNG low temperature submersible pump is modeled by UG and the thermo-fluid-structure coupling of the rotor components are calculated by ANSYS Workbench as the platform. The thermodynamic coupling force of the flow field to the solid structure is obtained. The modes of the rotor components are analyzed with or without prestressing force. Based on the results, the first ten order modes are extracted and the modes in the two cases are compared. The results show that except for the seventh-order and eighth-order vibrations, the vibration of the other stages is expressed on the impeller; after the prestressing is added, the various modes of the rotor component do not change.But the natural frequency of each order has a slight change,the prestress has little effect on the natural frequencies of the rotor components. The natural frequency of the ninth and tenth order are close to the three times the blade frequency of the pump, so there is the danger of resonance.It is necessary to optimize the design of the rotor components so that the front three times the blade frequency can be far away from the natural frequencies of the various stages, thereby avoiding the resonance of the pump during operation. Under the influence of prestressing force, the amplitude of the rotor parts also has a small change.
Key wordsLNG low temperature submersible pumps   thermo-fluid-structure coupling   amplitude   mode analysis   natural frequency   
收稿日期: 2017-05-15;
基金资助:江苏省重点研发计划项目(BE2015001-3);江苏省“六大人才高峰”项目(HYGC-008);江苏省第五期“333工程”培养对象项目
引用本文:   
张智伟,施卫东*,张德胜等. 基于热流固耦合的LNG低温潜液泵转子部件模态分析[J]. 排灌机械工程学报, 2019, 37(3): 211-215.
ZHANG Zhi-Wei-,SHI Wei-Dong-*,ZHANG De-Sheng- et al. Modal analysis of rotor parts of LNG low temperature submersible pump based on thermo-fluid-structure coupling[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(3): 211-215.
 
[1] 齐立龙.双向泵叶片应力与模态分析[D]. 扬州:扬州大学, 2015.
[2] 李德源, 叶枝全, 包能胜,等. 风力机旋转风轮振动模态分析[J]. 太阳能学报, 2004, 25(1):72-77.
LI Deyuan, YE Zhiquan, BAO Nengsheng, et al. Vibration modal analysis of wind turbine rotating wind wheel[J]. Journal of solar energy, 2004, 25(1): 72-77.(in Chinese)
[3] 刘厚林, 白羽, 董亮,等. 高温高压冶金用热水循环泵模态分析[J]. 江苏大学学报(自然科学版), 2015, 36(2):159-164.
LIU Houlin, BAI Yu, DONG Liang, et al. Modal analysis of metallurgical hot water circulating pump at high temperature and pressure [J]. Journal of Jiangsu University(natural science edition), 2015, 36(2):159-164.(in Chinese)
[4] 冀宏, 武俊合, 王金林,等. 液压电机叶片泵的振动模态分析[J]. 兰州理工大学学报, 2013, 39(2):25-28.
JI Hong, WU Junhe, WANG Jinlin, et al. Vibration mode analysis of hydraulic motor vane pump[J]. Journal of Lanzhou University of Technology, 2013, 39(2): 25-28.(in Chinese)
[5] 刘厚林, 徐欢, 王凯,等. 基于流固耦合的余热排出泵转子模态分析[J]. 流体机械, 2012, 40(6):28-32.
LIU Houlin, XU Huan, WANG Kai, et al. Modal analysis for rotor of residual heat removal pump based on fluid-structure interaction [J]. Fluid machinery, 2012, 40(6): 28-32.(in Chinese)
[6] EGUSQUIZA E,VALERO C,HUANG X, et al. Failure investigation of a large pump turbine runner [J].Engineering Failure Analysis,2012,23:27-34.
[7] 周岭, 侯云鹤, 王伟,等. 基于LMS Virtual.Lab的多级离心泵数值模态分析[J]. 流体机械, 2017, 45(6):21-25.
ZHOU Ling, HOU Yunhe, WANG Wei, et al. Numerical modal analysis of multistage centrifugal pump based on LMS Virtual.Lab[J]. Journal of fluid machinery, 2017, 45(6): 21-25.(in Chinese)
[8] 陈兴,舒双文,周帼彦,等.基于内聚力模型的T型钎焊接头裂纹扩展数值模拟[J].压力容器,2014,31(7):7-13.
CHEN Xing, SHU Shuangwen, ZHOU Yiyan, et al. Numerical simulation of crack propagation of T-type brazed joints based on cohesive zone model [J]. Pressure vessel, 2014, 31(7): 7-13.(in Chinese)
[9] ARTAL B E, CASSOU N P, LUENGO I, et al. A modal approach for vibration analysis and condition monitoring of a centrifugal pump[J]. International journal of engineering science & technology, 2011, 3(8):321-343.
[10] 江亲瑜,史哲,李宝良. 基于ANSYS的高压低噪小流量离心泵泵体的模态分析CTS[J].大连交通大学学报,2010,31(5):25-28.
JIANG Qinyu SHI Zhe,LI Baoliang. Model analysis of high pressure low noise small flow centrifugal pump body based on ANSYS[J].Journal of Dalian Jiaotong University, 2010,31(5):25-28.(in Chinese)
[11] 杨敏官,高波,贾卫东,等.熔盐泵轴承冷却及润滑系统的分析Cl7[J].江苏大学学报(自然科学版),2005,27(2):149-52.
YANG Minguan, GAO Bo, JIA Weidong, et al. Analysis of cooling and lubricating system of bearings in pumps for melted salts Cl7[J].Journal of Jiangsu University(natural science edition), 2005, 27(2): 149-52.(in Chinese)
[12] 陈宇杰, 郑源, 阚阚,等. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017, 35(2):126-132. 浏览
CHEN Yujie, ZHENG Yuan, YAN Yan, et al. Modal analysis of axial-flow pump rotor system in water [J]. Journal of drainage and irrigation machinery engineering, 2017, 35(2):126-132.(in Chinese)
[13] 张新, 郑源, 钱钧,等. 基于流固耦合的卧式轴流泵叶轮模态分析[J]. 水电能源科学, 2015,33(7):164-167.
ZHANG Xin, ZHENG Yuan, QIAN Jun, et al. Modal analysis of horizontal axial flow pump impeller based on fluid-structure coupling[J]. Hydroelectric energy scien-ce, 2015,33(7):164-167.(in Chinese)
[14] 张正阳, 郑源, 张新. 预应力与水介质对轴流泵叶轮模态的影响[J]. 水电能源科学, 2015,33(4):160-163.
ZHANG Zhengyang, ZHENG Yuan, ZHANG Xin. Effect of prestress and water medium on the mode of axial pump impeller[J]. Hydroelectric energy science, 2015,33(4):160-163.(in Chinese)
[1] 陈宇杰, 郑源, 阚阚, 张海胜, 徐建叶, 陈鹏, 陈荣杰. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017, 35(2): 126-132.
[2] 常浩, 刘建瑞, 李伟, 武永生, 高振军, 汤富俊. 大流量自吸离心泵机组轴与曲轴的模态分析[J]. 排灌机械工程学报, 2016, 34(12): 1035-1039.
[3] 刘建瑞, 陈斌, 张金凤, 骆寅, 汤富俊. 余热排出泵水中模态分析[J]. 排灌机械工程学报, 2015, 33(4): 290-295.
[4] 汤攀, 李红, 陈超, 刘振超, 邹晨海. 垂直摇臂式喷头导流器的流固耦合分析[J]. 排灌机械工程学报, 2015, 33(3): 267-272.
[5] 代翠, 柏宇星, 董亮, 孔繁余, 夏斌. 离心泵作透平壳体模态分析[J]. 排灌机械工程学报, 2015, 33(10): 835-839.
[6] 王其磊. 多级离心泵转子固有频率影响因素的比较[J]. 排灌机械工程学报, 2015, 33(1): 31-36.
[7] 李红, 刘振超, 汤攀, 王超. SR100垂直摇臂式喷头摇臂有限元分析[J]. 排灌机械工程学报, 2014, 32(5): 429-434.
[8] 傅丽萍, 阎宗国, 吴烈龙, 支发林, 王正伟. 水轮发电机组上机架共振分析及补气减振[J]. 排灌机械工程学报, 2013, 31(6): 501-505.
[9] 曹卫东, 高一, 王秀兰, 许荣军. 基于Ansys的矿用潜水电泵转子系统的优化设计[J]. 排灌机械工程学报, 2012, 30(2): 157-161.
[10] 郑源, 司佳钧, 黄建军, 赵振宙; 丁遥. 垂直轴风力机塔柱结构的分析及优化[J]. 排灌机械工程学报, 2011, 29(3): 246-250.
[11] 刘梅清, 赵文胜, 蒋 劲, 林 琦. 轴向流中不同约束条件柔性板稳定性分析[J]. 排灌机械工程学报, 2011, 29(1): 39-44.
[12] 包家汉, 潘紫微, 徐培民, 戚晓利. 基于流固耦合的泵组管系振动分析[J]. 排灌机械工程学报, 2010, 28(4): 349-353.
[13] 胡敬宁, 江 伟, 叶晓琰, 刘三华. 万吨级反渗透海水淡化高压泵级数的优化选择[J]. 排灌机械工程学报, 2010, 28(1): 43-46.
[14] 张学荣. 叶片在水体下的模态分析[J]. 排灌机械工程学报, 2002, 20(5): 10-12.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved