排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2019, Vol. 37 Issue (3): 185-191    DOI: 10.3969/j.issn.1674-8530.17.0078
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
叶片出口角对化工离心泵性能的影响
袁寿其,黄茜*,张金凤,张霞
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Effects of blade outlet angle on performance of chemical centrifugal pump
YUAN Shouqi, HUANG Xi*, ZHANG Jinfeng, ZHANG Xia
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (5882 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究叶片出口角对化工离心泵性能的影响,以一台比转数为180的化工离心泵为研究对象,将叶片出口角从22°依次增大到27°,37°和47°. 应用ANSYS 14.5软件进行数值计算,结果表明:叶片出口角对外特性影响显著,适当增大叶片出口角可以提高扬程及效率,但也不宜过度增大到47°;随着叶片出口角的增大,叶轮进口的低压区域逐渐向叶轮出口方向扩大,压力分布趋于紊乱,且在工作面附近有逆压梯度存在,会聚集不稳定的低压流体;在额定工况下,叶片出口角小于37°时,压力脉动幅值较小,且高频脉动很小;次主频有随叶片出口角的增大向低频处转移的趋势;4个方案叶轮所受径向力都是在额定工况下达到最小,并在小流量下差异性最大;不同工况下叶片出口角为27°的叶轮所受径向力最小,这说明对非定常特性的影响,叶片出口角存在一个最优值.此外,针对叶片出口角为22°的模型进行了性能试验,对比发现数值计算的结果是可信的.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁寿其
黄茜*
张金凤
张霞
关键词化工离心泵   叶片出口角   数值计算   压力脉动   径向力   非定常流动     
Abstract: In order to investigate the influence of blade outlet angle on the performance of a chemical centrifugal pump, a chemical centrifugal pump with the specific speed of 180 was taken as a model, three different blade outlet angles, such as 27°, 37°, and 47°, were designed except the original impeller with 22°blade outlet angle. Then, the software ANSYS 14.5 was applied to carry out numerical calculations. The results show that blade outlet angle can affect the performance significantly, an appropriately increased blade outlet angle can improve the head and efficiency of the pump, but it shouldn′t exceed 47°. With increasing blade outlet angle, the low energy fluid area gradually expands from the blade leading edge to the trailing edge, and the pressure distribution tends to be disordered, but also an adverse pressure gradient exists near the blade pressure side, and the unsteady fluid with low energy gathers there. Under design condition, when the blade outlet angle is less than 37°, the amplitude of pressure fluctuation is lower, and the amplitude of high frequency fluctuation is very small. The secondary frequency tends to shift to a lower frequency with increasing blade outlet angle. The impeller radial thrust in each design is the smallest under the design condition, and the difference is the largest under part-load condition. The impeller radial thrust force is the minimum at 27° blade outlet angle compared with the other impellers under the same flow rate. It is suggested that there is an optimal blade outlet angle for unsteady flows. Meanwhile, a performance experiment was conducted on the pump with 22° blade outlet angle, and it was found that the results of numerical simulation were reliable. Generally, this study has certain referential significance to development of chemical centrifugal pumps.
Key wordschemical centrifugal pump   blade outlet angle   numerical simulation   pressure fluctuation   radial force   unsteady flow   
收稿日期: 2017-04-14;
基金资助:国家自然科学基金资助项目(51009072);江苏高校优势学科建设工程项目
引用本文:   
袁寿其,黄茜*,张金凤等. 叶片出口角对化工离心泵性能的影响[J]. 排灌机械工程学报, 2019, 37(3): 185-191.
YUAN Shou-Qi,HUANG Qian-*,ZHANG Jin-Feng et al. Effects of blade outlet angle on performance of chemical centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2019, 37(3): 185-191.
 
[1] 黄列群, 武鹏, 薛存球, 等. 离心式化工流程泵设计技术进展综述[J]. 机电工程, 2009(6):1-4.
[2] HUANG Liequn, WU Peng, XUE Cunqiu, et al. Review of progress on the design technology of centrifugal type chemical process pump[J]. Journal of mechanical & electrical engineering, 2009(6):1-4.(in Chinese)
[3] WANG W, PEI J, YUAN S, et al. Application of different surrogate models on the optimization of centrifugal pump[J]. Journal of mechanical science and technology, 2016,30(2):567-574.
[4] GÜLICH J F. Centrifugal Pumps[M]. Heidelberg, Berlin: Springer, 2010.
[5] 郑路路, 窦华书, 蒋威, 等. 基于能量梯度方法的叶片数对离心泵稳定性影响研究[J]. 浙江理工大学学报(自然科学版), 2016,35(1):71-77.
ZHENG Lulu, DOU Huashu, JIANG Wei, et al. Effects of number of blades on stability of centrifugal pump based on energy gradient method[J]. Journal of Zhejiang Sci-Tech University(natural sciences), 2016, 35(1):71-77.(in Chinese)
[6] 张金凤, 袁寿其, 付跃登, 等. 分流叶片对离心泵流场和性能影响的数值预报[J]. 机械工程学报, 2009,45(7):131-137.
ZHANG Jinfeng, YUAN Shouqi, FU Yuedeng, et al. Numerical forecast of the influence of splitter blades on the flow field and characteristics of a centrifugal pump[J]. Journal of mechanical engineering, 2009,45(7):131-137.(in Chinese)
[7] PEI J, YUAN S, BENRA F K, et al. Numerical prediction of unsteady pressure field within the whole flow passage of a radial single-blade pump[J]. Journal of fluids engineering, 2012,134(10):101103.
[8] BACHAROUDIS E C, FILIOS A E, MENTZOS M D, et al. Parametric study of a centrifugal pump impeller by varying the outlet blade angle[J]. Open mechanical engineering journal, 2008,2(1):75-83.
[9] 查森. 叶片泵原理及水力设计[M]. 北京:机械工业出版社, 1988.
[10] 沈阳水泵研究所. 叶片泵设计手册[M]. 北京:机械工业出版社, 1983.
[11] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社, 2011.
[12] VESELOV V I. Effect of the outlet angle β2 on the cha-racteristics of low specific-speed centrifugal pumps[J]. Power technology and engineering, 1982,16(5):267-273.
[13] LI W, SHI W D, JIANG T, et al. Analysis on effects of the blade wrap angle and outlet angle on the performance of the low-specific speed centrifugal pump[J]. Advanced materials research, 2011(354/355):615-620.
[14] GONZÁLEZ J, SANTOLARIA C. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of fluids engineering, 2006,128(5):937-946.
[1] 李伟*, 张扬, 孙兵, 施卫东, 许荣军. 不同工况下混流泵转子径向力及压力脉动[J]. 排灌机械工程学报, 2019, 37(4): 277-283.
[2] 余昊谦*,王洋,韩亚文,胡日新,汤海涛,汪群. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306.
[3] 刘坤,徐雷*,杨波,刘蕴. 外啮合斜齿轮高压泵的CFD数值模拟[J]. 排灌机械工程学报, 2019, 37(4): 307-312.
[4] 孟凯旋*,潘中永,王雪豹. 不同航速下喷水推进器压力脉动分析[J]. 排灌机械工程学报, 2019, 37(3): 224-231.
[5] 郭广强, 张人会, 赵万勇, 杨军虎, 黄祺. 浮潜式消防泵启动过程瞬态特性的数值模拟[J]. 排灌机械工程学报, 2019, 37(2): 118-123.
[6] 石海峡,杨亚飞,李跃,许巍. 蜗壳式多级泵首级叶轮切割压力脉动特性[J]. 排灌机械工程学报, 2019, 37(1): 7-12.
[7] 史广泰,王志文. 多相混输泵叶轮不同区域增压性能[J]. 排灌机械工程学报, 2019, 37(1): 13-17.
[8] 李琪飞,*, 王源凯, 刘超, 张建勋, 张正杰, 王仁本. 混流式水泵水轮机驼峰区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(6): 461-466.
[9] 贺杰, 刘秀梅*, 李贝贝,, 徐化文. 槽口深度对U型节流阀空化流场的影响[J]. 排灌机械工程学报, 2018, 36(6): 517-523.
[10] 陈杰, 王勇, 刘厚林, 邵昌, 张翔*. 超低比转数离心泵的内部流动及非定常特性[J]. 排灌机械工程学报, 2018, 36(5): 377-383.
[11] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.
[12] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.
[13] 韩伟,, 李雪峰,*, 苏敏, 李仁年,, 陈昊,. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
[14] 何乃昌, 谈明高*, 刘厚林, 黄鑫, 吴贤芳. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
[15] 苏少华,, 刘竹青,*. 载荷分布对导叶式混流泵水力性能影响[J]. 排灌机械工程学报, 2018, 36(12): 1233-1239.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved