排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (12): 1306-1311    DOI: 10.3969/j.issn.1674-8530.17.0228
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于熵权TOPSIS模型评价涝渍条件下冬小麦水位管理方案
缪子梅1, 李竞春1, 陈栋2
1.江苏大学农业装备工程学院, 江苏 镇江 212013; 2.淮安市水利勘测设计研究院有限公司, 江苏 淮安 223005
Evaluating water management plan of winter wheat in waterlogging conditions based on entropy weighted TOPSIS model
MIAO Zimei1, LI Jingchun1*, CHEN Dong2
1.School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.Huai′an Water Investigation, Design and Research Co. Ltd., Huai′an, Jiangsu 223005, China
 全文: PDF (1499 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了选取基于资源、环境、效益相统一的水位调控方案,通过调节农田水位,制定了不同的排灌方案模拟冬小麦不同生育期的涝渍胁迫状况.将熵权法和TOPSIS模型有机结合,从冬小麦的高产、水资源的高效利用、减少农业面源污染3个方面选取4个指标构建冬小麦水位管理评价体系.通过熵权法确定各指标权重,运用TOPSIS模型对13种不同的水位管理方案进行计算,得到各处理的理论贴合度Si,从而评价了各水位管理方案受到涝渍胁迫的影响.根据模型计算结果得出,冬小麦在乳熟期-200 mm(3 d)(5 d-800 mm)受涝渍影响最严重,造成产量下降明显;而在分蘖期-50 mm(1 d)(5 d-200 mm)受到涝渍胁迫时,可实现冬小麦高产、节水和减排的目标.结果符合试验规律,具有一定的实践价值.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
缪子梅
李竞春
陈栋
关键词冬小麦   TOPSIS   涝渍胁迫   水位管理   熵权     
Abstract: In order to select the unified water level control scheme based on resources, environments and benefits, different irrigation and drainage schemes were developed to simulate the waterlogging stress of winter wheat at different growth stages. Entropy weight method and TOPSIS model were orga-nically combined, and four indicators were selected from three aspects, of high yield of winter wheat, efficient utilization of water resources, and reduction of non-point source pollution, to build a winter wheat water level management evaluation system. The weight of each index was determined by entropy weight method, and 13 different water level management schemes were calculated by using TOPSIS model. The theoretical fit Si of each treatment was obtained, and the effects of waterlogging stress on the water level management schemes were evaluated. According to the calculation results of the model, winter wheat was most affected by waterlogging at the milk-200 mm(3 d)(5 d-800 mm), resulting in a significant decrease in yield. At the tillering stage of-50 mm(1 d)(5 d-200 mm), the winter wheat yield, water saving and emission reduction can be achieved. The results accord with experimental law and are of certain practical value.
Key wordswinter wheat   TOPSIS   waterlogging stress   water level management   entropy weight   
收稿日期: 2017-10-24;
基金资助:

江苏省水利科技项目(20150176);国家自然科学基金资助项目(51679108);江苏高校优势学科建设工程资助项目

引用本文:   
缪子梅,李竞春,陈栋. 基于熵权TOPSIS模型评价涝渍条件下冬小麦水位管理方案[J]. 排灌机械工程学报, 2018, 36(12): 1306-1311.
MIAO Zi-Mei-,LI Jing-Chun-,CHEN Dong-. Evaluating water management plan of winter wheat in waterlogging conditions based on entropy weighted TOPSIS model[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(12): 1306-1311.
 
[1] 蔡剑, 姜东. 气候变化对中国冬小麦生产的影响[J]. 农业环境科学学报, 2011, 30(9):1726-1733.
CAI Jian,JIANG Dong. The effect of climate change on winter wheat production in China[J]. Journal of agro-environment science, 2011, 30(9):1726-1733.(in Chinese)
[2] 葛道阔, 曹宏鑫, 杨余旺,等. 基于作物生长模型的小麦区域化旱涝监测预警[J]. 江苏农业科学, 2017, 45(22):299-304.
GE Daokuo, CAO Hongxin, YANG Yuwang,et al. Monitoring and early warning of regional drought and water logged for wheat based on crop growth model[J].Jiangsu agricultural sciences, 2017, 45(22):299-304.(in Chinese)
[3] 肖梦华, 金秋, 褚琳琳. 涝渍胁迫对南方地区冬小麦氮素变化的影响[J]. 排灌机械工程学报, 2015, 33(7):618-625. 浏览
XIAO Menghua, JIN Qiu, CHU Linlin. Effects of waterlogging stress on change in nitrogen of winter wheat in South of China [J]. Journal of drainage and irrigation machinery engineering, 2015, 33(7):618-625.(in Chinese)
[4] 邵光成, 俞双恩, 刘娜,等. 以涝渍连续抑制天数为冬小麦排水指标的试验[J]. 农业工程学报, 2010, 26(8):56-60.
SHAO Guangcheng, YU Shuang′en, LIU Na, et al. Study on continuous days of water logging and excessive soil water as drainage index of wheat [J]. Transactions of the CSAE, 2010, 26(8):56-60.(in Chinese)
[5] WANG X G, CHEN Z W, MAO Z, et al. Irrigation, drainage and ecological engineering approaches to controlled farmland nonpoint source pollution[C]//Third International Conference on Intelligent System Design and Engineering Applications. IEEE Computer Society, 2013:909-912.
[6] YANG Gao, BO Zhu, TAO Wang,et al. Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: A case study of Southwestern China[J]. Journal of hydrology, 2012, 420(1):373-379.
[7] 闵继胜, 孔祥智. 我国农业面源污染问题的研究进展[J]. 华中农业大学学报(社会科学版), 2016(2):59-66.
[8] MIN Jisheng, KONG Xiangzhi. China′s agricultural non-point source pollution research progress [J].Journal of Huazhong Agricultural University(social science edition), 2016(2):59-66.(in Chinese)
[9] PHILIPPE B, CHRISTOPHE B. Agricultural non-point source pollution [M]//Spatial Management of Risks. ISTE, 2010:39-70.
[10] 魏占民, 李泽鸣, 李佳宝. TOPSIS模型对农田土地平整方式的综合评价[J]. 排灌机械工程学报, 2014, 32(4):356-362. 浏览
WEI Zhangmin, LI Zeming, LI Jiabao. Comprehensive evaluation on farmland leveling methods based on TOPSIS model[J]. Journal of drainage and irrigation machinery engineering, 2014, 32(4):356-362.(in Chinese)
[11] VETSCHERA R. Entropy and the value of information[J]. Central European journal of operations research, 2000(3):195.
[12] HWANG C L, YOON K. Methods for Multiple Attribute Decision Making[M]//Multiple Attribute Decision Making. Springer Berlin Heidelberg, 1981:58-191.
[13] 张军, 梁川. 基于灰色关联系数矩阵的TOPSIS模型在水环境质量评价中的应用[J]. 四川大学学报(工程科学版), 2009, 41(7):97-101.
ZHANG Jun, LIANG Chuan. Application of TOPSIS model based on gray correlation coefficient matrix in the evaluation of water environment quality[J]. Journal of Sichuan University(engineering science edition), 2009, 41(7):97-101.(in Chinese)
[14] 方崇, 张春乐, 陆明本. 基于熵权的TOPSIS模型在右江灌区节水改造效益综合评价中的应用[J]. 节水灌溉, 2011(2):52-54.
[15] FANG Chong, ZHANG Chunle, LU Mingben.Application of TOPSIS model based on entropy weight cofficient in comprehensive evaluation of water-saving reconstruction benefit in Youjiang irrigation district[J]. Water saving irrigation, 2011(2):52-54.(in Chinese)
[16] 雷勋平, 邱广华. 基于熵权TOPSIS模型的区域资源环境承载力评价实证研究[J]. 环境科学学报, 2016, 36(1):314-323.
LEI Xunping, QIU Guanghua.Empirical study about carrying capacity evaluation of regional resources and environment based on entropy-TOPSIS model[J]. Journal of environmental science, 2016, 36(1):314-323.(in Chinese)
[17] 缪子梅,李竞春,陈栋,等. 喷灌条件下茶园土壤肥力与茶叶品质指标[J]. 排灌机械工程学报, 2018, 36(6): 524-528. 浏览
MIAO Zimei,LI Jingchun,CHEN Dong,et al. Soil ferti-lity and tea quality of tea plantation under sprinkler irrigation[J]. Journal of drainage and irrigation machinery engineering, 2018, 36(6): 524-528.(in Chinese)
[1] 汪顺生, 薛红利*. 基于熵权的模糊物元模型优选夏玉米沟灌方式[J]. 排灌机械工程学报, 2018, 36(4): 362-368.
[2] 乔帅帅,,, 魏征,*, 张宝忠,, 胡振华. 基于DNDC模型的北京市大兴区冬小麦农业用水效率[J]. 排灌机械工程学报, 2018, 36(11): 1087-1091.
[3] 范艳丽, 刘俊梅, 赵嘉涛, 谭德冲, 李全起*. 推迟灌拔节水对宽幅麦田光合有效辐射的影响[J]. 排灌机械工程学报, 2018, 36(10): 952-957.
[4] 李秀梅, 赵伟霞, 李久生*, 栗岩峰. 降水预报准确率对变量灌溉水分管理的影响[J]. 排灌机械工程学报, 2018, 36(10): 985-989.
[5] 韩惠芳, 任玉洁, 高超, 闫振兴, 李全起. 推迟灌拔节水对不同种植模式冬小麦产量及品质的影响[J]. 排灌机械工程学报, 2017, 35(9): 792-797.
[6] 秦姗姗, 侯宗建, 吴忠东, 马东豪, 张佳宝, 黄平. 水氮耦合对冬小麦氮素吸收及产量的影响[J]. 排灌机械工程学报, 2017, 35(5): 440-447.
[7] 汪顺生, 李欢欢, 王康三, 刘东鑫. 宽垄沟灌下冬小麦水分生产函数试验研究[J]. 排灌机械工程学报, 2017, 35(11): 987-992.
[8] 宋扬,, 李慧,, 周维博,, 董起广. 泾惠渠灌区作物需水量特征及影响因素分析[J]. 排灌机械工程学报, 2016, 34(8): 703-708.
[9] 刘志勇, 刘东,,,, 刘文婷, 罗天琦. 人类活动对区域地下水水位影响分析[J]. 排灌机械工程学报, 2016, 34(8): 730-736.
[10] 吴军虎, 朱端端, 刘业伟, 陶汪海, 王锦辉. 改进密切值法的灌区运行状况综合评价[J]. 排灌机械工程学报, 2016, 34(10): 883-888.
[11] 刘馨惠, 卞城月, 马长健, 刘泉汝, 魏春芝, 李全起. 玉米秸秆覆盖下宽幅精播冬小麦产量损失补偿效应及水分利用效率[J]. 排灌机械工程学报, 2015, 33(9): 811-817.
[12] 肖梦华, 金秋, 褚琳琳. 涝渍胁迫对南方地区冬小麦氮素变化的影响[J]. 排灌机械工程学报, 2015, 33(7): 618-625.
[13] 刘仲秋, 卞城月, 刘馨惠, 刘泉汝, 马长健, 李全起. 种植模式及灌水频次对冬小麦抗倒性的影响[J]. 排灌机械工程学报, 2015, 33(4): 338-345.
[14] 王锦辉, 费良军, 谢芳, 王光社, 冯缠利. 灰色关联理论-TOPSIS法的大型灌区运行状况综合评价[J]. 排灌机械工程学报, 2015, 33(11): 985-990.
[15] 徐翠兰, 孙振海, 孟佳佳. 地下水位调控对冬小麦排水中氮磷浓度的影响[J]. 排灌机械工程学报, 2015, 33(10): 887-894.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved