排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (12): 1264-1269    DOI: 10.3969/j.issn.1674-8530.16.0230
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于直接边界元法的潜水排污泵内流噪声数值模拟
蔡晓彤, 施卫东*, 张德胜, 张俊杰, 石磊
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Numerical simulation of internal flow-induced noise in submersible sewage pump based on the direct boundary element method
CAI Xiaotong, SHI Weidong*, ZHANG Desheng, ZHANG Junjie, SHI Lei
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (5003 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了揭示不同湍流模型对超厚叶片潜水排污泵流动特性及噪声的影响,以1台超厚叶片低比转数潜水排污泵为模型,基于CFD理论与Lighthill声比拟理论,对潜水排污泵的流场和声场进行数值模拟,并对不同工况下(0.6QN,0.8QN,1.0QN,1.2QN,1.4QN)潜水排污泵的内部压力分布特性进行分析,同时探讨了内声场和外声场的噪声产生原因及分布传播特性.数值模拟结果表明,采用SST模型得到的性能曲线最接近试验结果;当叶轮从时刻a旋转到时刻d时,隔舌附近的高压区增大;隔舌处压力脉动最剧烈,这说明隔舌处是主要噪声源;在最优工况附近噪声较小,偏离最优工况处噪声较大;噪声极大值均出现在30°~75°内,极小值在225°~250°内.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡晓彤
施卫东*
张德胜
张俊杰
石磊
关键词潜污泵   压力脉动   流动诱导噪声   Lighthill声比拟理论     
Abstract: In order to reveal the influence of the different turbulence models on the flow characteristics and noise in the submersible sewage pump, a low specific speed pump with ultra-thick blades was adopted as a model. The computational fluid dynamics(CFD)based on the Lighthill equation theory was adopted to calculate the flow field and sound field respectively. The pressure distribution at different flow rates of 0.6QN, 0.8QN, 1.0QN, 1.2QN, 1.4QN was analyzed, and the causes of noise generation and distribution characteristics in the inner and outer fields were discussed. The results show that the performance curve obtained by SST model is the closest to the test results. When the impeller rotaties from moment a to moment d, the high-pressure area near the tongue increases. The pressure fluctuation at tongue is the most dramatic, indicating that the tongue is the main noise source. The noise is lower near the optimal condition and the larger noise deviates from the optimal condition; The maximum noise appears at 30°-75°, the minimum value oppears at 225°-250°.
Key wordssewage pump   pressure fluctuation   flow-induced noise   Lighthill acoustic analogy   
收稿日期: 2016-09-29;
基金资助:

江苏省重点研发计划项目(BE2015001-1);江苏省产学研前瞻性联合研究项目(BY2015064-08)

引用本文:   
蔡晓彤,施卫东*,张德胜等. 基于直接边界元法的潜水排污泵内流噪声数值模拟[J]. 排灌机械工程学报, 2018, 36(12): 1264-1269.
CAI Xiao-Tong,SHI Wei-Dong-*,ZHANG De-Sheng et al. Numerical simulation of internal flow-induced noise in submersible sewage pump based on the direct boundary element method[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(12): 1264-1269.
 
[1] 施卫东,曹卫东,刘厚林,等.无过载潜水排污泵的设计与试验[J]. 农业机械学报,2003,34(1):54-56.
SHI Weidong, CAO Weidong, LIU Houlin, et al. Design and experiment on a non-overload submersible se-wage pump[J]. Transactions of the CSAM, 2003,34(1):54-56.(in Chinese)
[2] 郎涛, 施卫东, 陈刻强,等. 带有前置搅拌装置污水泵的流动特性研究[J]. 流体机械, 2015, 43(11):29-33.
LANG Tao,SHI Weidong,CHEN Keqiang, et al. Research on the flow field and abrasion characteristics in sewage pump with pre-mixing device[J]. Fluid machi-nery, 2015, 43(11):29-33.(in Chinese)
[3] 张德胜,施卫东,陈斌,等.低比转速离心泵内部流场分析及试验[J].农业工程学报,2010,26(11):108-112.
ZHANG Desheng, SHI Weidong, CHEN Bin, et al. Turbulence analysis and experiments of low-specific-speed centrifugal pump[J]. Transactions of the CSAE, 2010,26(11):108-112.(in Chinese)
[4] 袁丹青,石荣,韩泳涛,等. 深井离心泵新型空间导叶设计及优化[J]. 江苏大学学报(自然科学版), 2015, 36(6): 661-665.
YUAN Danqing, SHI Rong, HAN Yongtao, et al. Design and optimization of new type space guide vanes for deep well centrifugal pump[J]. Journal of Jiangsu University(natural science edition), 2015, 36(6): 661-665.(in Chinese)
[5] 李跃,施卫东,韩笑笑,等.不同结构形式对串并联离心泵振动特性的影响[J].排灌机械工程学报, 2015, 33(9):744-749. 浏览
LI Yue, SHI Weidong, HAN Xiaoxiao, et al. Effects of pump hydraulic structure on vibration characteristic of series-parallel centrifugal pump[J]. Journal of drainage and irrigation machinery engineering, 2015, 33(9):744-749.(in Chinese)
[6] SI Qiaorui, YUAN Shouqi, YUAN Jianping,et al. Study on the influence of volute to flow-induced noise in centrifugal pump[J]. Advanced materials research, 2012, 516: 1009-1017.
[7] GIOVANNA Cavazzini. Roter-stator interaction in radial turbomachines: experimental and numerical investigation[M]. Lap Lambert Academic Publishing, 2013.
[8]   
[9] GAO Bo, YANG Minguan, LI Zhong, et al. Experimental study on cavitation induced low frequency vibration in a centrifugal pump[J]. Journal of engineering thermophysics, 2012, 33(6): 965-968.
[10] JOSE Gonzalez, JOAQUIN Fernandez,EDUARDO Blanco,et al. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump[J]. Transactions of the ASME,2002,124(2):348-355.
[11] ATIFI A, BENMANDSOUR S, BOIS G, et al. Numei-rical and experimental comparison of the vaned diffuser interaction inside the impeller velocity field of a centrifugal impeller[J]. Science China, 2011, 54(1): 1-9.
[12] DAZIN A, CAVAZZINI G, PAVESI G, et al. High-speed stereoscopic PIV study of rotating instabilities in a radial vaneless diffuser[J]. Experiments in fluids, 2011, 51: 83-93.
[13] 王勇,刘庆,刘东喜,等. 不同叶片冲角离心泵内流诱导振动噪声研究[J]. 流体机械,2013,41(7):1-4.
WANG Yong, LIU Qing, LIU Dongxi, et al. Analysis of flow induced vibration and noise in centrifugal pumps with different blade inlet incidence angle[J]. Fluid machinery, 2013,41(7):1-4.(in Chinese)
[14] JORGE P,JAVIER P,RAÙL B,et al. A simple acoustic model to characterize the internal low frequency sound field in centrifugal pumps[J]. Applied acoustics,2011,72:59-64.
[15] CHU S, DONG R, KATZ J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump——part A: Use of PDV data to compute the pressure field[J]. Journal of fluids engineering, 1995, 117(1):24-29.
[16] CHU S, DONG R, KATZ J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump——part B: effects of blade-tongue interactions[J]. Journal of fluids engineering, 1995, 117(1):30-35.
[17] DONG R,CHU S,KATZ J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump[J]. ASME Journal of fluids engineering,1997, 119(3):506-515.
[1] 李琪飞,*, 王源凯, 刘超, 张建勋, 张正杰, 王仁本. 混流式水泵水轮机驼峰区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(6): 461-466.
[2] 陈杰, 王勇, 刘厚林, 邵昌, 张翔*. 超低比转数离心泵的内部流动及非定常特性[J]. 排灌机械工程学报, 2018, 36(5): 377-383.
[3] 韩伟,, 李雪峰,*, 苏敏, 李仁年,, 陈昊,. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
[4] 何乃昌, 谈明高*, 刘厚林, 黄鑫, 吴贤芳. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
[5] 苏少华,, 刘竹青,*. 载荷分布对导叶式混流泵水力性能影响[J]. 排灌机械工程学报, 2018, 36(12): 1233-1239.
[6] 李琪飞,, 张震, 李仁年,, 宋启策, 张建勋. 带MGV装置水泵水轮机无叶区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(12): 1270-1275.
[7] 高波1, 杜文强1, 杨丽1, 张宁1, 王浩宇1, 袁霄2. 蜗壳面积变化规律对低比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(9): 749-.
[8] 季磊磊, 李伟, 施卫东, 邵佩佩, 蒋小平. 叶片数对混流泵内部非定常压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(8): 666-.
[9] 张琳, 施卫东, 张德胜, 石磊. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.
[10] 韩冬冬, 于凤荣, 张思青. 水泵水轮机水轮机工况全流道三维非定常数值模拟[J]. 排灌机械工程学报, 2017, 35(4): 325-332.
[11] 刘志超, 孔繁余, 王洋, 谢山峰, 赵立峰. 非等距叶片分布对旋涡自吸泵压力脉动的影响[J]. 排灌机械工程学报, 2017, 35(2): 113-118.
[12] 顾延东, 袁寿其, 裴吉, 刘永, 曹健. 导叶安装位置对混流泵压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 93-99.
[13] 李仁年,, 陈昊, 韩伟,, 李雪峰, 刘慧娟. 颗粒粒径对导叶式离心泵动静叶栅内流动的影响[J]. 排灌机械工程学报, 2017, 35(12): 1018-1023.
[14] 谈明高, 廉益超, 吴贤芳, 丁荣, 陈昆. 双流道泵内瞬态动力学特性[J]. 排灌机械工程学报, 2017, 35(12): 1024-1029.
[15] 史广泰, 刘小兵, 魏文景, 刘洋. 含导叶的液力透平内部压力脉动特性[J]. 排灌机械工程学报, 2017, 35(1): 6-12.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved