排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (11): 1180-1186    DOI: 10.3969/j.issn.1674-8530.18.1026
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于CAR-SVM模型的季节性冻融区地下水埋深预测
赵天兴, 朱焱*, 杨金忠, 毛威
武汉大学水资源与水电工程科学国家重点实验室, 湖北 武汉 430072
CAR-SVM model based water table depth prediction in seasonal freezing-thawing areas
ZHAO Tianxing, ZHU Yan*, YANG Jinzhong, MAO Wei
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
 全文: PDF (2191 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 准确预测地下水埋深是灌区水资源管理的重要依据.考虑到地下水埋深在时间序列上呈现滞后性和非线性,耦合了多变量时间序列CAR与支持向量机SVM,构建了CAR-SVM地下水埋深预测模型.为了提高模型在冻融期的模拟效果,构建了季节性冻融灌区地下水埋深拟合模型——CAR-SVM(T-TF)模型.模拟结果显示,只考虑冻融期气温的CAR-SVM(T-TF)模型优于考虑全年气温的CAR-SVM(T)模型及不考虑气温的CAR-SVM模型.CAR-SVM(T-TF)模型在全灌区地下水埋深的模拟结果:在验证期模型决定系数R2为0.954,冻融期R2为0.973;RMSE均小于0.090 m,模型精度较高.将全灌区得到的3阶CAR-SVM(T-TF)模型结构用于灌区内5个灌域地下水埋深模拟,模型在各灌域均有较好的适用性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵天兴
朱焱*
杨金忠
毛威
关键词河套灌区   CAR-SVM   地下水埋深   冻融期   气温     
Abstract: Accurately predicting water table depth is an important basis for water resources management in irrigation areas. Based on hysteresis and nonlinearity of groundwater in time series, a CAR-SVM water table depth prediction model was developed by integrating multivariate time series controlled auto-regressive(CAR)and support vector machine(SVM). To improve the performance of the model in freezing-thawing period, a water table depth fitting model, i.e. CAR-SVM(T-TF)model, was established for seasonal freezing-thawing irrigation district. Simulation results indicate that the performance of the CAR-SVM(T-TF)model with ambient temperature effect in the freezing-thawing period is better than either the CAR-SVM(T)model with ambient temperature effect of the whole year or the CAR-SVM without any ambient temperature effect. The CAR-SVM(T-TF)model was applied to predict the water table depth in Hetao Irrigation District. The results demonstrate that the coefficient of multiple determination, R2, is 0.954 and 0.973 in validation period and freezing-thawing period, respectively, and all the RMSE in different periods are less than 0.09 m. suggesting a relatively high accuracy. The 3-order CAR-SVM(T-TF)model structure obtained from Hetao Irrigation District as a whole was used to simulate the water table depths in five irrigation areas in the district. The model has a good applicability in each area, and the predicted water table depths are closed to the measurements. Specially, R2 is more than 0.90, RMSE is less than 0.10 m, and BIAS is less than 0.04 in the freezing-thawing period in each area.
Key wordsHetao Irrigation District   CAR-SVM   water table depth   freezing-thawing period   temperature   
收稿日期: 2018-04-12;
基金资助:

国家自然科学基金资助项目(51779178,51479143,51790533)

引用本文:   
赵天兴,朱焱*,杨金忠等. 基于CAR-SVM模型的季节性冻融区地下水埋深预测[J]. 排灌机械工程学报, 2018, 36(11): 1180-1186.
ZHAO Tian-Xing,ZHU Yan-*,YANG Jin-Zhong et al. CAR-SVM model based water table depth prediction in seasonal freezing-thawing areas[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(11): 1180-1186.
 
[1] 岳卫峰, 高鸿永, 陈爱萍,等. 基于GAMS的内蒙古河套灌区水资源联合利用分析[J]. 南水北调与水利科技, 2013,11(3):12-16.
YUE Weifeng, GAO Hongyong, CHEN Aiping, et al. Study on conjunctive use of water resources in Hetao Irrigation District of Inner Mongolia based on GAMS simulation and optimization[J]. South-to-north water transfers and water science & technology, 2013,11(3):12-16.(in Chinese)
[2] 黄一帆, 刘俊民, 姜鹏, 等. 基于Modflow的泾惠渠地下水动态及预测研究[J]. 水土保持研究, 2014,21(2):273-278.
HUANG Yifan, LIU Junmin, JIANG Peng, et al. Research for groundwater dynamic and forecasting of Jinghui Irrigation Zone based on Modflow[J]. Research of soil and water conservation, 2014,21(2):273-278.(in Chinese)
[3] 李彩梅, 杨永刚, 秦作栋, 等. 基于FEFLOW和GIS技术的矿区地下水动态模拟及预测[J]. 干旱区地理, 2015,38(2):359-367.
LI Caimei, YANG Yonggang, QIN Zuodong, et al. Simulation and prediction on variations of groundwater in mining area based on FEFLOW and GIS[J]. Arid land geography, 2015,38(2):359-367.(in Chinese)
[4] YAO Junqiang, LIU Zhihui, YANG Qing, et al. Responses of runoff to climate change and human activities in the Ebinur Lake catchment, western China[J]. Water resources, 2014,41(6):738-747.
[5] 王蒙蒙, 戴凌全, 戴会超, 等. 基于支持向量回归的洞庭湖水位快速预测[J]. 排灌机械工程学报, 2017,35(11):954-961. 浏览
WANG Mengmeng, DAI Lingquan, DAI Huichao, et al. Support vector regression based model for predicting water level of Dongting Lake[J]. Journal of drainage and irrigation machinery engineering, 2017,35(11):954-961.(in Chinese)
[6] SURYANARAYANA C, SUDHEER C, MAHAMMOOD V, et al. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India[J]. Neurocomputing, 2014,145:324-335.
[7] EBRAHIMI H, RAJAEE T. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine[J]. Global and planetary change, 2017,148:181-191.
[8] 张展羽, 梁振华, 冯宝平, 等. 基于主成分-时间序列模型的地下水位预测[J]. 水科学进展, 2017,28(3):415-420.
ZHANG Zhanyu, LIANG Zhenhua, FENG Baoping, et al. Groundwater level forecast based on principal component analysis and multivariate time series model[J]. Advances in water science, 2017,28(3):415-420.(in Chinese)
[9] SUJAY RAGHAVENDRA N, DEKA P C. Support vector machine applications in the field of hydrology: a review[J]. Applied soft computing, 2014,19:372-386.
[10] 杨文元, 郝培静, 朱焱, 等. 季节性冻融区井渠结合灌域地下水动态预报[J]. 农业工程学报, 2017,33(4):137-145.
YANG Wenyuan, HAO Peijing, ZHU Yan, et al. Groundwater dynamics forecast under conjunctive use of groundwater and surface water in seasonal freezing and thawing area[J]. Transactions of the CSAE, 2017,33(4):137-145.(in Chinese)
[11] 王枭,杨培岭,苏艳平. 温室番茄对微小流量滴灌埋深与灌水量的响应[J]. 排灌机械工程学报, 2018, 36(10): 937-942. 浏览
WANG Xiao,YANG Peiling,SU Yanping. Response of greenhouse tomatoes to buried depth and low irrigation limit of small flow drip irrigation[J]. Journal of drainage and irrigation machinery engineering, 2018, 36(10): 937-942.(in Chinese)
[12] 李玉营, 马东方, 王书平,等. 孕穗期地下水埋深对小麦产量及品质的影响[J]. 江苏农业科学, 2016, 44(12):107-110.
LI Yuying,MA Dongfang,WANG Shuping,et al.Effects of groundwater depth at booting stage on yield and quality of wheat[J].Jiangsu agricultural sciences, 2016, 44(12):107-110.(in Chinese)
[13] 刘艳伟,王淑莹,屠星磊,等. 元谋干热河谷区近60年干湿状况和气温变化特征分析[J]. 排灌机械工程学报, 2018, 36(2): 172-178. 浏览
LIU Yanwei,WANG Shuying,TU Xinglei, et al. Characteristic analysis of dry-wet condition and temperature trend in Yuanmou dry-hot valley(DHV)in resent 60 years[J]. Journal of drainage and irrigation machinery engineering, 2018, 36(2): 172-178.(in Chinese)
[1] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[2] 刘艳伟, 王淑莹*, 屠星磊, 杨启良. 元谋干热河谷区近60年干湿状况和气温变化特征分析[J]. 排灌机械工程学报, 2018, 36(2): 172-178.
[3] 刘美含, 史海滨*, 李仙岳, 闫建文, 孙伟, 窦旭. 河套灌区玉米农田蒸散动态变化及其影响因子的通径分析[J]. 排灌机械工程学报, 2018, 36(11): 1081-1086.
[4] 张娜,, 张红玲, 张栋良, 屈忠义*. 基于高光谱的区域土壤颗粒组成及有机质预测模型尺度转换[J]. 排灌机械工程学报, 2018, 36(11): 1175-1179.
[5] 赵扬搏,, 仝道斌, 王景才, 周明耀*, 黄秋歌. 基于冠层温度的水稻关键生育期缺水诊断[J]. 排灌机械工程学报, 2018, 36(10): 931-936.
[6] 张自超, 韩宇, 陈建*, 王术波, 王广琦, 杜楠楠. 基于无人机遥感数据的生态渠系信息提取[J]. 排灌机械工程学报, 2018, 36(10): 1006-1011.
[7] 白寅祯, 魏占民, 张健, 高红艳,, 魏子涵. 基于WinSRFR软件的河套灌区水平畦田规格的优化[J]. 排灌机械工程学报, 2016, 34(9): 823-828.
[8] 刘战东, 刘祖贵, 俞建河, 南纪琴, 秦安振, 肖俊夫. 地下水埋深对玉米生长发育及水分利用的影响[J]. 排灌机械工程学报, 2014, 32(7): 617-624.
[9] 王少丽,, 焦平金,, 许迪,, 瞿兴业,. 新疆旱区浅层土盐分动态及其影响因素[J]. 排灌机械工程学报, 2013, 31(7): 623-628.
[10] 罗玉峰,, 李思,, 彭世彰, 王卫光, 缴锡云, 姜云鹭,, 顾宏. 基于气温预报和HS公式的参考作物腾发量预报[J]. 排灌机械工程学报, 2013, 31(11): 987-992.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved