排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (11): 1115-1119    DOI: 10.3969/j.issn.1674-8530.18.1155
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
溶解混施水肥一体化装置施肥性能试验研究
张志洋, 李红*, 陈超, 夏华猛
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Experiment on fertilization performance of dissolved and mixed water-fertilizer integrated device
ZHANG Zhiyang, LI Hong*, CHEN Chao, XIA Huameng
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1596 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了了解溶解混施水肥一体化装置的性能,以装置出口水肥溶液浓度的均匀性作为衡量装置施肥性能的主要参数,采用控制变量法,研究滤网桶参数、进口流量及加料器对装置施肥性能的影响.结果表明:采用60目的滤网桶时,出口水肥浓度均匀系数比40目的高6.1%;采用250 mm的滤网桶时,出口水肥浓度均匀系数比150 mm的高4.3%;相比于流量为2.5,2.0 m3/h,采用1.5 m3/h时,出口水肥浓度均匀系数分别高了12.6%和17.3%;使用加料器时,装置出口水肥浓度的均匀系数比不使用加料器加肥时高了9.9%.因此滤网桶的参数、流量均对装置施肥性能有明显的影响,滤网桶网孔数越多,滤网桶直径越大,流量越小,装置出口水肥溶液浓度的均匀系数越大,装置的施肥性能越好.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志洋
李红*
陈超
夏华猛
关键词水肥一体化   溶解混施   固体肥料   施肥性能   试验研究     
Abstract: The fertilization performance of a dissolved and mixed water-fertilizer integrated device was characterized and the uniformity of solution concentration at the outlet of the device was used as the main parameter measuring the performance. The effects of filter parameters, inlet flow rate and fertilizer feeder on the performance were studied by using variable control method. Experimental results showed that the uniform coefficient of solution concentration at the outlet of the device for 60 mesh filter was 6.1% better than that for 40 mesh filter. For the filter with 250 mm diameter, the uniform coefficient was 4.3% higher than that for the filter with 150 mm diameter. Under the condition of 1.5 m3/h flow rate, the uniformity coefficient of solution concentration at the outlet was 12.6% and 17.3% higher in comparison with the flow rates of 2.5 m3/h and 2.0 m3/h. When fertilizer feeder was used, the uniformity coefficient was 9.9% higher than that without the feeder. Therefore, filter parameters and flow rate exhibited obviously influences on the fertilization performance of the device. The more the number of filter meshes and the larger the filter diameter as well as the lower the flow rate, the higher the uniformity coefficient and the better the fertilization performance. 
Key wordsintegration of water and fertilizer   dissolved and mixed application   liquid fertilizer   fertilization performance   experimental research   
收稿日期: 2018-05-08;
基金资助:

国家重点研发计划项目(2017YFD0201502);农业部公益性行业科研专项(201503130)

引用本文:   
张志洋,李红*,陈超等. 溶解混施水肥一体化装置施肥性能试验研究[J]. 排灌机械工程学报, 2018, 36(11): 1115-1119.
ZHANG Zhi-Yang,LI Hong-*,CHEN Chao et al. Experiment on fertilization performance of dissolved and mixed water-fertilizer integrated device[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(11): 1115-1119.
 
[1] 张育斌,魏正英,朱新国,等. 精量水肥灌溉系统控制策略及验证[J]. 排灌机械工程学报, 2017, 35(12): 1088-1095. 浏览
ZHANG Yubin,WEI Zhengying,ZHU Xinguo, et al. Control strategy for precision water-fertilizer irrigation system and its verification[J]. Journal of drainage and irrigation machinery engineering, 2017, 35(12): 1088-1095.(in Chinese)
[2] KENNEDY T L, SUDDICK E C, SIX J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation[J]. Agriculture ecosystems & environment, 2013, 170(8):16-27.
[3] 袁寿其, 李红, 王新坤. 中国节水灌溉装备发展现状、问题、趋势与建议[J]. 排灌机械工程学报, 2015, 33(1):78-92. 浏览
YUAN Shouqi,LI Hong,WANG Xinkun. Status,problems,trends and suggestions for water-saving irrigation equipment in China [J].Journal of drainage and irrigation machinery engineering, 2015, 33(1):78-92.(in Chinese)
[4] 韩启彪, 冯绍元, 黄修桥,等. 我国节水灌溉施肥装置研究现状[J]. 节水灌溉, 2014(12):76-79.
[5] HAN Qibiao, FENG Shaoyuan, HUANG Xiuqiao, et al. Research on fertilizer injection units in saving-water irrigation in China [J]. Water saving irrigation, 2014(12):76-79.(in Chinese)
[6] 陈雪蛟, 王克俭, 韩宪忠,等. 水肥一体化自动控制系统设计[J]. 湖北农业科学, 2016(11):2902-2904.
[7] CHEN Xuejiao, WANG Kejian, HAN Xianzhong, et al. Designs on automatic control system of integration of water and fertilizer[J]. Hubei agricultural sciences, 2016(11):2902-2904.(in Chinese)
[8] 蔡长青, 侯首印, 张桢,等. 温室智能灌溉水肥一体化监控系统[J]. 江苏农业科学, 2017, 45(10):164-166.
CAI Changqing,HOU Shouyin,ZHANG Zhen,et al. Integrated monitoring and control system of water and fertilizer for intelligent irrigation in Greenhouse[J]. Jiangsu agricultural sciences, 2017, 45(10):164-166.(in Chinese)
[9] 陆绍德, 黄所, 关经伦,等. HJYDS-1型移动式水肥药一体化施肥车研制与推广[J]. 现代农业装备, 2012(9):48-50.
[10] LU Shaode, HUANG Suo, GUAN Jinglun, et al. Deve-lopment and popularization of HJYDS-1 mobile integration of water, fertilizer and pesticides vehicle[J]. Mo-dern agricultural equipments, 2012(9):48-50.(in Chinese)
[11] 李建平,胡佳宁,王鹏飞,等. 一种施肥方法及水肥混合装置:CN104429270A [P]. 2015.
[12] 陈剑, 吕新. 滴灌棉田压差式施肥罐注肥均匀度研究与分析[J]. 节水灌溉, 2011(1):62-64.
[13] CHEN Jian, LYU Xin. Study on fertilization uniformity of pressure differential tank in drip irrigation cotton field[J]. Water saving irrigation, 2011(1):62-64.(in Chinese)
[14] 范军亮, 张富仓, 吴立峰,等. 滴灌压差施肥系统灌水与施肥均匀性综合评价[J]. 农业工程学报, 2016, 32(12):96-101.
FAN Junliang, ZHANG Fucang, WU Lifeng, et al. Field evaluation of fertigation uniformity in drip irrigation system with pressure differential tank[J]. Transactions of the CSAE, 2016, 32(12):96-101.(in Chinese)
[15] 冯锦梅. 在线监测氨氮浓度的电导测量方法研究[J]. 环境监控与预警, 2014,6(1):34-38.
FENG Jinmei. Study on the conductivity measurement method for ammonia on-line monitoring[J]. Environmental monitoring and forewarning, 2014,6(1):34-38.(in Chinese)
[16] 汤攀, 李红, 骆志文,等. 比例施肥泵驱动活塞受力分析及内部流动模拟与试验[J]. 农业工程学报, 2017, 33(23):93-100.
TANG Pan, LI Hong, LUO Zhiwen, et al. Force analysis of drive piston and simulation and experiment of internal flow for proportional fertilizer pump[J].Transactions of the CSAE, 2017, 33(23):93-100.(in Chinese)
[17] 董文峰, 黄征青. 电导率法测定EDTA二钠盐水溶液的浓度[J]. 广州化工, 2017, 45(6):110-111.
DONG Wenfeng,HUANG Zhengqing. Determination of concentration of EDTA-2Na aqueous solution by conductivity method[J]. Guangzhou chemical industry, 2017, 45(6):110-111.(in Chinese)
[18] 许正典,向清江,WAQAR A Q等. 摇臂喷头低压掺气情况下田间组合喷灌试验研究[J]. 排灌机械工程学报, 2018, 36(9): 840-844. 浏览
XU Zhengdian, XIANG Qingjiang, WAQAR A Q, et al. Field combination experiment on impact sprinklers with aerating jet at low working pressure[J]. Journal of drainage and irrigation machinery engineering, 2018, 36(9): 840-844.(in Chinese)
[1] 王珍, 李久生*, 栗岩峰, 郝锋珍. 磷肥施入方式对土壤速效磷含量及玉米生长的影响[J]. 排灌机械工程学报, 2018, 36(10): 1023-1028.
[2] 施卫东, 张铃杰, 周岭, 陆伟刚. 基于DEM的流化床气固两相流瞬态数值模拟与验证[J]. 排灌机械工程学报, 2017, 35(5): 404-409.
[3] 王海渠, 李红, 邹晨海. 旋流式射流泵装置性能试验研究[J]. 排灌机械工程学报, 2017, 35(4): 283-288.
[4] 董亮, 肖佳伟, 明加意, 刘厚林. 液力减速器模型空化特性数值模拟及试验研究[J]. 排灌机械工程学报, 2017, 35(1): 1-5.
[5] 付强, 张本营, 朱荣生, 曹梁. 转速对核主泵空化特性的影响[J]. 排灌机械工程学报, 2016, 34(8): 651-656.
[6] 王宁, 黄彪, 吴钦, 王国玉. 绕水翼空化流动及振动特性的试验与数值模拟[J]. 排灌机械工程学报, 2016, 34(4): 321-327.
[7] 周岭, 杨阳, 施卫东, 陆伟刚, 叶道星. 导叶出口边位置对深井离心泵性能的影响[J]. 排灌机械工程学报, 2016, 34(12): 1028-1034.
[8] 阳君, 袁寿其, 裴吉, 张金凤. 带导叶离心泵内部旋转失速研究进展[J]. 排灌机械工程学报, 2015, 33(5): 369-373.
[9] 孔繁余, 陈凯, 杨孙圣, 汪家琼, 袁昕. 泵作透平性能试验台设计开发[J]. 排灌机械工程学报, 2015, 33(5): 387-390.
[10] 尹世洋, 吴文勇, 刘洪禄, 孙振华, 祁兴会, 原桂霞. 北京市平原区农用机井水电折算系数试验研究[J]. 排灌机械工程学报, 2014, 32(11): 998-1004.
[11] 袁丹青;王冠军;陈向阳;张孝春;张晓炜. 旋涡泵的研究现状与展望[J]. 排灌机械工程学报, 2008, 26(6): 63-68.
[12] 陈卫平. 谏壁泵站改造进出水流道设计方案试验研究[J]. 排灌机械工程学报, 2006, 24(3): 17-19.
[13] 邹战强. 荔枝需水量试验研究[J]. 排灌机械工程学报, 2004, 22(3): 25-27.
[14] 郑源;张德虎;廖锐;谢伟东;薛建良;黄春云. 竖井贯流泵能量特性试验研究[J]. 排灌机械工程学报, 2003, 21(3): 31-34.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved