排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (8): 779-784    DOI: 10.3969/j.issn.1674-8530.18.1153
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于ELM的西北旱区参考作物蒸散量预报模型
张皓杰1, 崔宁博1,2*, 徐颖1, 钟丹1, 胡笑涛3, 龚道枝4
1.四川大学水力学与山区河流开发保护国家重点实验室, 四川 成都 610065; 2.南方丘区节水农业研究四川省重点实验室, 四川 成都 610066; 3.西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100; 4.中国农业科学院农业环境与可持续发展研究所作物高效用水与抗灾减损国家工程实验室, 北京 100081
Prediction for reference crop evapotranspiration in arid northwest China based on ELM
ZHANG Haojie1, CUI Ningbo1,2*, XU Ying1, ZHONG Dan1, HU Xiaotao3, GONG Daozhi4
1.State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; 2.Provincial Key Laboratory of Water-saving Agriculture in Hill Area of Southern China, Chengdu, Sichuan 610066, China; 3.Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; 4.State Engineering Laboratory for Efficient Water Use and Disaster Loss Reduction of Crops, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China
 全文: PDF (2426 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为实现气象资料缺失情况下ET0的精确预报,选取中国西北旱区4个代表性站点的气象资料,建立15种基于极限学习机(ELM)的ET0预报模型,并通过与其他ET0计算模型对比和可移植性分析探究ELM在西北旱区的适用性.结果表明:基于温度和风速的ELM7预报精度较高(整体评价指标GPI排名第4);基于温度和辐射的ELM5预报精度(GPI排名第6)明显高于Iramk模型和Jensen-Haise模型;仅基于温度的ELM9预报精度(GPI排名第8)高于Hargreaves-Samani模型.通过模型可移植性分析发现,ELM7在西北旱区内各训练站点和预测站点组合下预报精度良好.因此,可将ELM5(输入温度和辐射)、ELM7(输入温度和风速)和ELM9(输入温度)作为西北旱区较少气象参数输入情况下精确预报ET0的推荐模型.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张皓杰
崔宁博
*
徐颖
钟丹
胡笑涛
龚道枝
关键词中国西北旱区   参考作物蒸散量   预报模型   极限学习机   可移植性     
Abstract: To predict ET0 accurately with limited meteorological data, four representative meteorological sites were selected in arid northwest China to construct extreme learning machine(ELM). This model was used to predict ET0 and compare with other three models. The results show that when only based on the temperature and the wind speed data, the simulation accuracy of ELM7 is high(GPI ranks the 4th). When only based on the temperature and the radiation data, the simulation accuracy of ELM5 model(GPI ranks the 6th)is greater than that of Iramk model and Jensen-Haise model. When only based on the temperature data, the simulation accuracy of ELM9 model(GPI ranks the 8th)is greater than that of Hargreaves-Samani model. The results of ELM model portability show that ELM7 model in arid northwestern China has high simulation accuracy based on different sites′ datas. Thus, ELM5, ELM7 and ELM9 models can be used as a recommended model for the prediction of ET0 based on limited meteorological data in the northwest arid area of China.
Key wordsarid Northwest China   reference crop evapotranspiration   predicting model   extreme learning machine   portability   
收稿日期: 2018-05-07;
基金资助:

“十三五”国家重点研发计划项目(2016YFC0400206);国家自然科学基金资助项目(51779161);“十二五”国家科技支撑计划项目(2015BAD24B01);中国高校基本科研业务费专项基金资助项目(2016CDDY-S04-SCU,2017XDLZ-N22)

引用本文:   
张皓杰,崔宁博,*等. 基于ELM的西北旱区参考作物蒸散量预报模型[J]. 排灌机械工程学报, 2018, 36(8): 779-784.
ZHANG Hao-Jie-,CUI Ning-Bo-,* et al. Prediction for reference crop evapotranspiration in arid northwest China based on ELM[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(8): 779-784.
 
[1] 李晨,崔宁博,冯禹,等. 四川省不同区域参考作物蒸散量计算方法的适用性评价[J]. 农业工程学报,2016,32(4):127-134.
LI Chen,CUI Ningbo,FENG Yu,et al. Adaptation eva-luation for reference evapotranspiration methods in diffe-rent regions of Sichuan[J]. Transactions of the CSAE,2016,32(4):127-134.(in Chinese)
[2] ALLEN R G,PEREIRAL L S,RAES D,et al. Crop evapotranspiration:guidelines for computing crop water requirements[M]. Rom:FAO,1998.
[3] 徐俊增,彭世彰,丁加丽,等. 基于蒸渗仪实测数据的日参考作物蒸发腾发量计算方法评价[J]. 水利学报,2010,41(12):1497-1505.
XU Junzeng,PENG Shizhang,DING Jiali,et al. Evaluation of methods for estimating daily reference crop evapotranspiration based on lysimeter grass experiments[J]. Journal of hydraulic engineering,2010,41(12):1497-1505.(in Chinese)
[4] HARGREAVES G H. Reference crop evapotranspiration from temperature[J]. Applied engineering in agriculture,1985,1(2):96-99.
[5] IRMAK S,MUTIIBWA D,PAYERO J,et al. Modeling soybean canopy resistance from micrometeorological and plant variables for estimating evapotranspiration using one-step Penman-Monteith approach[J]. Journal of hydrology,2013,507(18):1-18.
[6] PRIESTLEY C H B,TAYLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly weather review,1972,100(2):81-92. 2.3.CO;2 target="_blank">
[7] ZAREI A R,MAHMOUDI M R. Evaluation of changes in RDI st,index effected by different potential evapotranspiration calculation methods[J]. Water resources management,2017,31(1):1-19.
[8] LANDERAS G,ORTIZ-BARREDO A,LÓPEZ J J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country(Northern Spain)[J]. Agricultural water management,2008,95(5):553-565.
[9] TABARI H,KISI O,EZANI A,et al. SVM,ANFIS,regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment[J]. Journal of hydrolo-gy,2012,444(10):78-89.
[10] 侯志强,杨培岭,苏艳平,等.基于最小二乘支持向量机的ET0模拟计算[J].水利学报,2011,42(6):743-749.
HOU Zhiqiang, YANG Peiling, SU Yanping, et al. Simulation of ET0 based on LS-SVM method[J]. Journal of hydraulic engineering, 2011,42(6):743-749.(in Chinese)
[11] FENG Yu,CUI Ningbo,GONG Daozhi,et al. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling[J]. Agricultural water management,2017,193:163-173.
[12] ABDULLAH S S,MALEK M A,ABDULLAH N S,et al. Extreme learning machines:a new approach for prediction of reference evapotranspiration[J]. Journal of hydrology,2015,527:184-195.
[13] 冯禹,崔宁博,龚道枝,等. 基于极限学习机的参考作物蒸散量预测模型[J]. 农业工程学报,2015,31(S1):153-160.
FENG Yu,CUI Ningbo,GONG Daozhi,et al. Prediction model of reference crop evapotranspiration based on extreme learning machine[J]. Transactions of the CSAE,2015,31(S1):153-160.(in Chinese)
[14] 汪彪,曾新民,刘正奇,等. 中国西北地区参考作物蒸散量的估算与变化特征[J]. 干旱气象,2016,34(2):243-251.
WANG Biao,ZENG Xinmin,LIU Zhengqi,et al. Estimation and variation characteristics of the reference crop evapotranspiration in Northwest China during 1956-2011[J]. Journal of arid meteorology,2016,34(2):243-251.(in Chinese)
[1] 吴立峰, 鲁向晖*, 刘小强, 张苏扬, 刘明美, 董建华. 蝙蝠算法优化极限学习机模拟参考作物蒸散量[J]. 排灌机械工程学报, 2018, 36(9): 802-805.
[2] 韩洋,, 常迪,, 黄仲冬,, 李平,, 梁志杰,, 齐学斌,*. 河南省参考作物蒸散量时空分布特征及主要成因分析[J]. 排灌机械工程学报, 2018, 36(9): 812-818.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved