排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (6): 501-508    DOI: 10.3969/j.issn.1674-8530.17.0219
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
杭州八堡泵站斜式泵装置流道水力优化
潘志军1, 徐磊2*, 沈晓燕3, 洪飞2, 张浩1
1.杭州市南排工程建设管理处, 浙江 杭州 310000; 2.扬州大学水利与能源动力工程学院, 江苏 扬州 225009; 3.浙江省水利水电勘测设计院, 浙江 杭州 310002
Conduit Hydraulic optimization of the slanted pump system for Babao Pumping Station of Hangzhou
PAN Zhijun1, XU Lei2*, SHEN Xiaoyan3, HONG Fei2, ZHANG Hao1
1.Hangzhou Nanpai Construction Management Office, Hangzhou, Zhejiang 310000, China; 2.School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China; 3.Zhejiang Design Institute of Water Conservancy & Hydro-electirc Power, Hangzhou, Zhejiang 310002, China
 全文: PDF (3023 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为保证杭州八堡泵站斜式泵装置的安全、稳定和高效运行,运用三维湍流数值模拟方法对该站斜式进、出水流道进行了水力优化设计研究.基于流道三维流场数值计算结果,揭示了进水流道高度和泵轴倾角分别对斜式进水流道水力性能的影响规律,揭示了出水流道平面扩散角和泵轴倾角分别对斜式出水流道水力性能的影响规律.结果表明:斜式进水流道高度愈大流道水力性能愈好,泵轴倾角愈小流道水力性能愈好;斜式进水流道转向角度愈小,水流受离心力影响愈小,愈有利于水流流动调整;斜式出水流道扩散角愈小流道水力性能愈好,泵轴倾角愈大流道水力性能愈好;受螺旋状的水流和急剧转向的“S”形弯曲流道的共同影响,斜式出水流道内不可避免地存在不对称旋涡;综合考虑八堡泵站流道水力性能、土建工程量、闸门提升高度和水泵机组安装检修难度等多方面的因素,确定该站斜式泵装置的泵轴倾角为20°.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘志军
徐磊*
沈晓燕
洪飞
张浩
关键词八堡泵站   斜式泵装置   进出水流道   水力优化   数值模拟     
Abstract: In order to ensure the slanted pump system of Babao Pumping Station to operate safely, reliably and efficiently, the optimum hydraulic design on the station′s slanted inlet conduit and slanted outlet conduit has been completed by the method of three-dimensional turbulent flow numerical simulation. Based on the numerical simulation results, the influences of conduit height and pump shaft angle on the hydraulic performance of slanted inlet conduit were respectively studied and the influences of diffusion angle and pump shaft angle on the hydraulic performance of slanted outlet conduit were respectively studied. The results indicate that the larger the height of the slanted inlet conduit, the better the conduit hydraulic performance; the smaller the angle of pump shaft, the better the conduit hydraulic performance; the smaller the turn angle of inlet conduit is, the smaller the influence of centrifugal force is, and the more advantageously the flow adjusts; the smaller the diffusion angle of slanted outlet conduit, the better the conduit hydraulic performance, the larger the angle of pump shaft, the better the conduit hydraulic performance; affected by both the spiral flow and the S-shaped curving conduit which turns sharply, the asymmetric vortex exists inevitably in slanted outlet conduit; comprehensive consideration on the various factors of Babao Pumping Station such as conduit hydraulic performance, civil engineering quantity, hoisting height of sluice gate and installation and maintenance difficulty of pumping unit, the angle of pump shaft is determined as 20° for the slanted pump system of the station.
Key wordsBabao Pumping Station   slanted pump system   inlet and outlet conduits   hydraulic optimization   numerical simulation   
收稿日期: 2017-09-26;
基金资助:

国家自然科学基金资助项目(51309200);浙江省重大科技专项重点工业项目(2011C11068);浙江省水利科技重大专项(RB1613);中国博士后科学基金项目(2013M540469);江苏省博士后科研基金项目(1301021A)

引用本文:   
潘志军,徐磊*,沈晓燕等. 杭州八堡泵站斜式泵装置流道水力优化[J]. 排灌机械工程学报, 2018, 36(6): 501-508.
PAN Zhi-Jun-,XU Lei-*,SHEN Xiao-Yan- et al. Conduit Hydraulic optimization of the slanted pump system for Babao Pumping Station of Hangzhou[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(6): 501-508.
 
[1] 徐磊, 刘荣华, 陈伟, 等. 3种泵轴倾角斜式进水流道水力性能的比较[J]. 水力发电学报, 2011, 30(2): 128-132.
XU Lei, LIU Ronghua, CHEN Wei, et al. Comparison of hydraulic performances of three slanting inlet conduits with different angles of pump shaft [J]. Journal of hydroelectric engineering, 2011, 30(2): 128-132.(in Chinese)
[2] 李世掌. 大型斜30°轴流泵机组结构与安装方法探讨[J]. 山西建筑, 2010, 36(26): 334-335.
LI Shizhang. On large-scale 30 degree slantwise axial flow pump structure and its installation methods [J]. Shanxi architecture, 2010, 36(26): 334-335.(in Chinese)
[3] 蔡宏伟, 潘利国. 杭州三堡排涝工程水泵选型分析[J]. 浙江水利科技, 2011(3): 28-30.
[4] CAI Hongwei, PAN Liguo. Pump selection analysis of Hangzhou Sanbao drainage project [J]. Zhejiang hydrotechnics, 2011(3): 28-30.(in Chinese)
[5] 李康波, 梁世皎. 新技术在文头岭泵站设计中的应用[J]. 广东水利水电, 2010(1): 40-42.
[6] LI Kangbo, LIANG Shijiao. Application of new techno-logy in the design of Wentouling Pumping Station [J]. Guangdong water resources and hydropower, 2010(1): 40-42.(in Chinese)
[7] 黄健勇, 张飞珍, 张浩, 等. 斜式轴流泵装置进水流道的正交优化设计[J]. 排灌机械工程学报, 2013, 31(9): 741-746. 浏览
HUANG Jianyong, ZHANG Feizhen, ZHANG Hao, et al. Design optimization of inlet conduit in slanted axial-flow pump installation by orthogonal array experiment [J]. Journal of drainage and irrigation machinery engineering, 2013, 31(9): 741-746.(in Chinese)
[8] 周正富, 陈松山, 何钟宁, 等. 斜式轴流泵装置模拟计算研究[J]. 中国农村水利水电, 2009(4): 65-68.
[9] ZHOU Zhengfu, CHEN Songshan, HE Zhongning, et al. Research on numerical simulation of slant shaft pump system [J]. China rural water and hydropower, 2009(4): 65-68.(in Chinese)
[10] 刘君, 郑源, 周大庆, 等. 大型斜式轴流泵装置能量特性研究[J]. 流体机械, 2010, 38(1): 1-4.
LIU Jun, ZHENG Yuan, ZHOU Daqing, et al. Study on energy characteristics of large-scale inclined axial-flow pump arrangement [J]. Fluid machinery, 2010, 38(1): 1-4.(in Chinese)
[11] 王亮, 陈松山, 周正富, 等. 45°斜式轴流泵装置的流动特性分析与实验[J]. 水利与建筑工程学报, 2013, 11(5): 149-152.
WANG Liang, CHEN Songshan, ZHOU Zhengfu, et al. Analysis and test for flow characteristics of 45° slanting axial flow pumping system [J]. Journal of water resources and architectural engineering, 2013, 11(5): 149-152.(in Chinese)
[12] 何钟宁, 周正富, 谈强, 等. 15°斜轴泵装置特性试验[J]. 排灌机械, 2008, 26(6): 36-40.
HE Zhongning, ZHOU Zhengfu, TAN Qiang, et al. Characteristic test of 15°slanting axis pump set [J]. Drainage and irrigation machinery, 2008, 26(6): 36-40.(in Chinese)
[13] 刘润根, 马晓忠, 詹磊. 黄家坝30°斜式轴流泵装置模型试验研究[J]. 中国农村水利水电, 2016(2): 109-111.
[14] LIU Rungen, MA Xiaozhong, ZHAN Lei. Model test of axial flow pump system with 30°slant shaft for Huangjiaba Pumping Station [J]. China rural water and hydropower, 2016(2): 109-111.(in Chinese)
[15] 金国栋, 潘志军, 孟金波, 等. 斜式轴流泵装置模型的飞逸特性研究[J]. 水动力学研究与进展, 2013, 28(5): 591-596.
JIN Guodong, PAN Zhijun, MENG Jinbo, et al. Study of the runaway character of slanted axial-flow pump [J]. Chinese journal of hydrodynamics, 2013, 28(5): 591-596.(in Chinese)
[16] 陆林广. 高性能大型低扬程泵装置优化水力设计[M]. 北京: 中国水利水电出版社, 2013: 33.
[17] LI Yaojun, WANG Fujun. Numerical Investigation of performance of an axial-flow pump with inducer [J]. Journal of hydrodynamics, 2007, 19(6): 705-711.
[18] JAFARZADEH B, HAJARI A, ALISHAHI M M, et al. The flow simulation of a low-specific-speed high-speed centrifugal pump [J]. Applied mathematical modelling, 2010(5): 242-249.
[19] CONSTANTINESCU G S, PATEL V C. Numerical mo-del for simulation of pump-intake flow and vortices[J].Journal of hydraulic engineering, 1998, 124(2): 123-134.
[20] RODI W. Turbulence models and their application in hydraulics experimental and mathematical fluid dyna-mics [M]. Delft: IAHR Section on Fundamentals of Division Ⅱ, 1980: 44-46.
[21] 陆林广, 吴开平, 冷豫, 等. 泵站出水流道模型水力损失的测试[J]. 排灌机械, 2005, 23(5): 23-26.
LU Linguang, WU Kaiping, LENG Yu, et al. Measurement for hydraulic loss of outlet conduit of pumping station [J]. Drainage and irrigation, 2005, 23(5): 23-26.(in Chinese)
[1] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[2] 唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
[3] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[4] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
[5] 王麦琪, 李彦军*, 袁寿其, 孟凡. 双向流道轴流泵装置的飞逸特性[J]. 排灌机械工程学报, 2018, 36(5): 384-390.
[6] 刘刚, 付强*, 朱荣生, 王秀礼, 张本营, 李梦圆. 超临界锅炉给水泵级间密封间隙流动特性[J]. 排灌机械工程学报, 2018, 36(5): 391-396.
[7] 韩伟,, 陈雨, 刘宜,*, 李光贤, 王洁, 王腾达. 水轮机活动导叶端面间隙磨蚀特性数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 404-412.
[8] 李岩,*, 吴志诚, 田川公太朗, 冯放,, 张婷婷, 白荣彬, 李建业. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419.
[9] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[10] 张坤,, 陈颂英,*. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.
[11] 马光飞,,*, 吴燕明,, 方勇,, 李超,, 郑寓,, 章蕾,. 涡流装置固相冲洗特性三维多相流动数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 334-339.
[12] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[13] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.
[14] 徐维晖, 侯晓*, 胡孟, 何小可, 王为术. 粗糙度对离心泵空化过程的影响[J]. 排灌机械工程学报, 2018, 36(3): 197-203.
[15] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved