排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (6): 485-493    DOI: 10.3969/j.issn.1674-8530.17.0048
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于双向流固耦合的核主泵叶轮力学特性
钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆
1.江苏大学国家水泵及系统工程研究中心, 江苏 镇江 212013
Mechanical properties of nuclear reactor coolant pump impeller based on bidirectional fluid structure interaction
ZHONG Weiyuan*, ZHU Rongsheng, WANG Xiuli, LU Yonggang, LIU Yong, KANG Junjun
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1974 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于双向流固耦合方法对核主泵内流场和结构场进行联合求解,研究流固耦合作用下核主泵叶轮的力学特性,分析经流固耦合作用后叶轮总体、叶片进出口边及叶根在各流量下的应力及变形分布.研究结果表明流固耦合作用对主泵外特性有一定影响且耦合后结果更接近试验值;随着流量的增加,叶轮前盖板处应力分布均匀性有所降低,而叶轮的最大等效应力均发生在叶轮叶片出口边与叶轮前盖板交界处,在交变载荷的作用下容易产生疲劳破坏.叶轮的最大的变形发生在叶轮叶片出水边的中部,叶轮的最大变形量随着流量的增加而增大.叶根的进出口边处易出现应力集中现象,说明叶片进出口边对液流的压力载荷及动静干涉作用极为敏感,在叶轮水力及结构设计时应予以足够重视.研究结果为核主泵以后的性能分析、叶轮的结构设计、维护和检修提供了有益参考.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟伟源*
朱荣生
王秀礼
卢永刚
刘永
康俊鋆
关键词核主泵   双向流固耦合   动应力   变形   数值模拟     
Abstract: Based on the bidirectional fluid structure interaction method, the flow field and the structural response of the impeller were solved. The mechanical properties of the impeller of the nuclear reactor coolant pump were studied.The stress and deformation distribution of the impeller, the leading and trailing of the blade and the root of the blade under different flows were analyzed. The results show that the fluid structure interaction effect has some influence on the characteristics of the nuclear reactor coolant pump and the result is closer to the test value after coupling; with the increase of flow rate, the stress distribution uniformity of the front shroud decreases, and the maximum equivalent stress occurs at the trailing edge of impeller blade and the frond shroud at the junction, where the fatigue load is liable to occur under the alternating load; the maximum deformation of the impeller occurs at the middle of the exit edge of the blade, which increases with flow rate; the stress concentration phenomenon appears easily at the leading and trailing of the blade root, which shows that the inlet and outlet of the blade are very sensitive to the pressure, load and static and dynamic interference of the fluid flow; as a result enough attention should be paid to these areas in impeller′s hydraulic and structural design. The results provide a useful reference for the performance analysis of the nuclear reactor coolant pump as well as the structural design, maintenance and overhaul of the impeller.
Key wordsnuclear reactor coolant pump   bidirectional fluid structure interaction   dynamic stress   deformation   numerical simulation   
收稿日期: 2017-03-09;
基金资助:

国家自然科学基金资助项目(51379091,51509112);江苏省重点研发计划项目(BE2016160);江苏省产学研前瞻性联合研究项目(BY2016072-02);江苏省自然科学基金项目(BK20130516);江苏省普通高校研究生科研创新计划项目(KYLX16_0894)

引用本文:   
钟伟源*,朱荣生,王秀礼等. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
ZHONG Wei-Yuan-*,ZHU Rong-Sheng,WANG Xiu-Li et al. Mechanical properties of nuclear reactor coolant pump impeller based on bidirectional fluid structure interaction[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(6): 485-493.
 
[1] 蔡龙,张丽平.浅谈压水堆核电站主泵[J].水泵技术,2007(4):1-9.
[2] CAI Long,ZHANG Liping.Discusion on main pump of pressurized water reactor nuclear power station[J].Pump technology,2007(4):1-9.(in Chinese)
[3] 王勤湖,李社坤,卢文跃,等.压水堆核电站一回路工况变化对主泵主要机械性能的影响[J].核动力工程,2005, 26(6):103-108.
WANG Qinhu,LI Shekun,LU Wenyue,et al.The influe-nce with the change of the main mechanical properties of the main pump on primary circuit of pressurized water reactor nuclear power station[J].Nuclear power engineering,2005,26(6):103-108.(in Chinese)
[4] JOSE G,CARLOS S.Unsteady flow structure and global variables in a centrifugal pump[J].Journal of fluids engineering, 2006,128(9):937-946.
[5] 王秀礼, 卢永刚, 袁寿其,等. 基于流固耦合的核主泵汽蚀动力特性研究[J]. 哈尔滨工程大学学报, 2015,36(2):213-217.
WANG Xiuli,LU Yonggang,YUAN Shouqi,et al. Dynamic characteristics analysis of the reactor coolant pump variation based on fluid-structure coupling[J]. Journal of Harbin Engineering University, 2015,36(2):213-217.(in Chinese)
[6] BENRA F K, DOHMEN H J. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C]//Proceedings of ASME 2007 Pressure Vessels and Piping Conference, 2007:41-48.
[7] KATO C, YAMADE Y, WANG Hong, et al. Prediction of the noise from a multi-stage centrifugal pump[C]//Proceedings of ASME 2005 Fluids Engineering Division Summer Meeting, 2005: 1273-1280.
[8] 施卫东, 徐燕, 张启华,等. 基于流固耦合的多级潜水泵叶轮结构强度分析[J]. 农业机械学报, 2013, 44(5):70-73.
SHI Weidong, XU Yan, ZHANG Qihua, et al. Structural strength analysis of multistage submersible pump impeller based on fluid-structure interaction[J]. Transactions of the CSAE, 2013, 44(5):70-73.(in Chinese)
[9] 孔繁余, 陈浩, 王婷,等. 基于流固耦合的减压塔底泵泵体强度分析[J]. 机械工程学报, 2013, 49(2):159-164.
KONG Fanyu,CHEN Hao,WANG Ting,et al. Strength analysis of decompression tower bottom pump′s pump casing based on fluid-solid coupling[J]. Journal of mechanical engineering, 2013,49(2):159-164.(in Chinese)
[10] 裴吉,袁寿其,袁建平. 流固耦合作用对离心泵内部流场影响的数值计算[J]. 农业机械学报,2009,40(12): 108-112.
PEI Ji, YUAN Shouqi, YUAN Jianping. Numerical calculation for effect of fluid-structure interaction on flow field in centrifugal pump[J]. Transactions of the CSAM, 2009, 40(12): 108-112.(in Chinese)
[11] 黄浩钦, 刘厚林, 王勇,等. 基于流固耦合的船用离心泵转子应力应变及模态研究[J]. 农业工程学报, 2014, 30(15):98-105.
HUANG Haoqin, LIU Houlin, WANG Yong, et al. Stress-strain and modal analysis on rotor of marine centrifugal pump based on fluid-structure interaction[J]. Transactions of the CSAE, 2014, 30(15): 98-105.(in Chinese)
[12] 李伟, 杨勇飞, 施卫东,等. 基于双向流固耦合的混流泵叶轮力学特性研究[J]. 农业机械学报, 2015, 46(12):82-88.
LI Wei, YANG Yongfei, SHI Weidong, et al. Mechanical properties of mixed-flow pump impeller based on bidirectional fluid-structure interaction[J]. Transactions of the CSAM, 2015,46(12):82-88.(in Chinese)
[13] 陈向阳,袁丹青,杨敏官,等.基于流固耦合方法的300MWe级反应堆主泵叶片应力分析[J].机械工程学报,2010,46(4):111-115.
CHEN Xiangyang, YUAN Danqing, YANG Minguan, et al. Blade stress of the reactor coolant pump of 300 MWe nuclear power plant in China based on fluid-solid coupling method[J]. Journal of mechanical engineering, 2010, 46(4): 111-115.(in Chinese)
[14] 肖若富, 朱文若, 杨魏,等. 基于双向流固耦合水轮机转轮应力特性分析[J]. 排灌机械工程学报, 2013, 31(10):862-866. 浏览
XIAO Ruofu, ZHU Wenruo, YANG Wei, et al.Stress analysis of Francis hydraulic turbine runner based on FSI[J]. Journal of drainage and irrigation machinery engineering, 2013,31(10):862-866.(in Chinese)
[15] 施卫东, 王国涛, 张德胜,等. 基于流固耦合的轴流泵叶片应力特性[J]. 排灌机械工程学报, 2013, 31(9):737-740. 浏览
SHI Weidong, WANG Guotao, ZHANG Desheng, et al. Stress characteristics in blades of axial-flow pump based on fluid-structure interaction[J]. Journal of drainage and irrigation machinery engineering, 2013, 31(9):737-740.(in Chinese)
[16] 付强, 邢树兵, 朱荣生,等. 核主泵叶轮叶片进口边位置对气液两相流动特性的影响[J]. 核动力工程, 2016,37(3):87-93.
FU Qiang, XING Shubing, ZHU Rongsheng,et al. Effect of blade inlet position on flow characteristics of nuclear reactor coolant pump under gas-liquid two-phase condition[J]. Nuclear power engineering, 2016,37(3):87-93.(in Chinese)
[17] 张栋俊,徐士鸣.类球形压水室出流管形状对核主泵性能的影响[J].水泵技术,2010(1):21-25.
[18] ZHANG Dongjun,XU Shiming.Effect of the shape of a flow tube on the performance of a nuclear main pump[J].Pump technology,2010(1):21-25.(in Chinese)
[19] 朱荣生,李小龙,袁寿其,等.反应堆主泵压水室出口收缩角对水力性能的影响[J].核动力工程,2012,33(2):97-102.
ZHU Rongsheng,LI Xiaolong,YUAN Shouqi,et al.Influence of outlet contraction angle on hydraulic performance of main pump chamber[J]. Nuclear power engineering,2012,33(2):97-102.(in Chinese)
[20] 朱跃, 张继革, 尹俊连,等. 屏蔽式核主泵动静转子间的压力脉动特性[J]. 原子能科学技术, 2014, 48(9):1576-1582.
ZHU Yue, ZHANG Jige, YIN Junlian, et al.Characteristics of pressure fluctuation between rotor and stator of canned nuclear coolant pump[J].Atomic energy scien-ce and technology, 2014, 48(9):1576-1582.(in Chinese)
[1] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[2] 唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
[3] 潘志军, 徐磊*, 沈晓燕, 洪飞, 张浩. 杭州八堡泵站斜式泵装置流道水力优化[J]. 排灌机械工程学报, 2018, 36(6): 501-508.
[4] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
[5] 王麦琪, 李彦军*, 袁寿其, 孟凡. 双向流道轴流泵装置的飞逸特性[J]. 排灌机械工程学报, 2018, 36(5): 384-390.
[6] 刘刚, 付强*, 朱荣生, 王秀礼, 张本营, 李梦圆. 超临界锅炉给水泵级间密封间隙流动特性[J]. 排灌机械工程学报, 2018, 36(5): 391-396.
[7] 韩伟,, 陈雨, 刘宜,*, 李光贤, 王洁, 王腾达. 水轮机活动导叶端面间隙磨蚀特性数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 404-412.
[8] 李岩,*, 吴志诚, 田川公太朗, 冯放,, 张婷婷, 白荣彬, 李建业. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419.
[9] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[10] 吕延光, 吴景鑫*, 范业娇, 胡雷. 核主泵紧急注入水供应系统结构的改进及试验[J]. 排灌机械工程学报, 2018, 36(4): 283-287.
[11] 张坤,, 陈颂英,*. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.
[12] 李涛, 王玉川, 亢阳*, 赵聪聪, 宋晓倩. 椭圆柱绕流摆动流固耦合的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 307-312.
[13] 马光飞,,*, 吴燕明,, 方勇,, 李超,, 郑寓,, 章蕾,. 涡流装置固相冲洗特性三维多相流动数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 334-339.
[14] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[15] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved