排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (6): 478-484    DOI: 10.3969/j.issn.1674-8530.17.0062
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究
唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Numerical analysis of the two-phase flow(liquid/gas)in axial pump based on Eulerian-Eulerian flow model
TANG Yuanfeng, YUAN Jianping*, SI Qiaorui, ZHANG Keyu, LU Rong
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (3108 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究轴流泵在气液两相流条件下的内部流动特性,以1台比转数为1 500的模型泵为研究对象,基于Eulerian-Eulerian非均相流模型,以空气和水为工作介质,进行了多种流量下不同进口含气率的定常数值计算,分析了不同气液两相工况下模型泵外特性变化情况,并通过叶轮内压力、气相分布以及气液两相速度分布情况探究气液两相在轴流泵内流动规律.计算结果表明:在水气混合工况下,此轴流泵的扬程和效率随着含气率的增加呈现逐渐下降的趋势;相同含气率下,压力面压力大于吸力面压力,从轮毂到轮缘,压力呈现增大的趋势,叶轮表面的气体主要集中在叶片的吸力面,随着流量的增加,压力最高点逐渐趋近于轮缘附近,压力面的气体逐渐增多,吸力面的气体逐渐减少,压力面的气体主要聚积在进水边,并有向轮缘移动的趋势;相同流量下,气体还是主要集中在叶轮的吸力面,随着含气率的增加,压力面最大压力区域有从进水边向轮缘中间区域移动的趋势,吸力面的气体有沿着进口向出口运动的趋势.另外,随着流量的增加,气液相的速度随之增加,在靠近轮毂的区域出现了明显的流动分离现象.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐苑峰
袁建平*
司乔瑞
张克玉
陆荣
关键词轴流泵   两相流动   非均相流模型   内部流动   数值模拟     
Abstract: In order to investigate the gas-liquid two-phase flow characteristics in axial pumps, an axial pump with the specific speed of 1 500 was selected as study object. The two-phase flow in the pump was calculated based on the Eulerian-Eulerian inhomogeneous two-phase model at different flow rates and inlet gas volume fractions(IGVF). The performance of the axial pump was obtained under gas-liquid mixing flow conditions. Meanwhile, the two-phase flow pattern was indicated by analysis of the pressure and gas distribution and velocity distribution of two-phase in the impeller. The results show that the curves of the head and the efficiency display a slight decline with the increase of inlet gas volume fraction. Moreover, under the same air void, the pressure of the pressure face is greater than the suction surface pressure, and the pressure increases from the hub to the rim. And the gas is mainly concentrated on the suction surface of the impeller. With the increase of flow rate, the highest pressure is nearing the flange, the gas on the pressure surface of blade gradually increases, but that on the suction surface is opposite. The pressure surface gas is mainly accumulated on the inlet side and has a tendency to move towards the rim. At the same flow rate, the gas is still mainly concentrated on the suction surface of the impeller. With the increase of air void, the maximum pressure region of the pressure face has a tendency to move from the inlet side to the middle rim, then moves to the impeller outlet along the suction surface. In addition, with the increase of flow rate, the velocity of gas-liquid phase increases, and the flow separation phenomenon appears in the region close to the hub.
Key wordsaxial pump   two-phase flow   heterogeneous flow model   internal flow   numerical analysis   
收稿日期: 2017-03-23;
基金资助:

国家科技支撑计划项目(2015BAD20B01);江苏省水利科技项目(2015042)

引用本文:   
唐苑峰,袁建平*,司乔瑞等. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
TANG Yuan-Feng,YUAN Jian-Ping-*,SI Qiao-Rui et al. Numerical analysis of the two-phase flow(liquid/gas)in axial pump based on Eulerian-Eulerian flow model[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(6): 478-484.
 
[1] 关醒凡.现代泵理论与设计[M].北京:中国宇航出版社, 2011.
[2] 赵浩儒, 杨帆, 吴俊欣,等. 立式轴流泵装置压力脉动特性的试验[J]. 流体机械, 2017, 45(7):12-16.
ZHAO Haoru, YANG Fan, WU Junxin, et al. Experimental analysis on pressure fluctuation of multiple conditions in axial-flow pumping system[J]. Fluid machinery, 2017, 45(7):12-16.(in Chinese)
[3] 姜乃昌.泵与泵站[M].北京:中国建筑工业出版社,2007.
[4] 陈次昌.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.
[5] MURAKAMI M, MINEMURA K. Effects of entrained air on the performance of a horizontal axial-flow pump[J]. Journal of fluids engineering, 1983, 105(4):382-388.
[6] 张金亚,蔡淑杰,朱宏武,等.螺旋轴流泵内气液两相流型可视化研究[J].工程热物理学报,2015,36(9):1937-1941.
ZHANG Jinya, CAI Shujie, ZHU Hongwu, et al. Experimental study of gas-liquid flow pattern in a helico-axial multiphase pump by visualization[J]. Journal of engineering thermophysics, 2015, 36(9): 1937-1941.(in Chinese)
[7] TREMANTE A, MORENO N, REY R, et al. Numerical turbulent simulation of the two-phase flow(liquid/gas)through a cascade of an axial pump[J]. Journal of fluids engineering, 2002, 124(2):371-376.
[8] CAMPO A, CHISELY E A. Experimental characterization of two-phase flow centrifugal pumps[J]. Journal of bacteriology, 2010, 176(24):7524-7531.
[9] ZHU J, ZHANG H Q. CFD Simulation of ESP perfor-mance and bubble size estimation under gassy conditions[C]//Proceedings of SPE Annual Technical Conference and Exhibition, 2014:2039-2053.
[10] CARIDAD J, KENYERY F. CFD analysis of electric submersible pumps(ESP)handling two-phase mixtures[J]. Journal of energy resources technology, 2004, 126(2):99-104.
[11] CARIDAD J, ASUAJE M, KENYERY F,et al. Chara-cterization of a centrifugal pump impeller under two-phase flow conditions[J]. Journal of petroleum science & engineering, 2008, 63(1):18-22.
[12] CARIDAD J A, KENYERY F. Slip factor for centrifugal impellers under single and two-phase flow conditions[J]. Journal of fluids engineering, 2005, 127(2):317-321.
[13] TREMANTE A, MORENO N, REY R, et al. Numerical performance prediction and experimental validation of an axial pump under two-phase flow(liquid/gas)[C]//Proceedings of ASME Engineering Technology Conferen-ce on Energy, 2002:755-760.
[14] BARRIOS L, PRADO M G. Modeling two phase flow inside an electrical submersible pump stage[C]//Proceedings of ASME International Conference on Ocean, 2009:227-231.
[15] 黄思.多级轴流式混输泵内气液两相流的数值计算[J].水泵技术, 2007(6):34-39.
[16] HUANG Si. Numerical calculation of gas-liquid flow in a multistage axial flow pump[J]. Waterhead technology, 2007(6):34-39.(in Chinese)
[17] 袁建平,张克玉,司乔瑞,等.基于非均相流模型的离心泵气液两相流动数值研究[J].农业机械学报,2017,48(1):89-95.
[18]   YUAN Jianping, ZHANG Keyu, SI Qiaorui, et al. Numerical investigation of gas-liquid two-phase flow in centrifugal pumps based on inhomogeneous model[J] Transactions of the CSAM,2017,48(1):89-95.(in Chinese)
[1] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[2] 李琪飞,*, 王源凯, 刘超, 张建勋, 张正杰, 王仁本. 混流式水泵水轮机驼峰区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(6): 461-466.
[3] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[4] 潘志军, 徐磊*, 沈晓燕, 洪飞, 张浩. 杭州八堡泵站斜式泵装置流道水力优化[J]. 排灌机械工程学报, 2018, 36(6): 501-508.
[5] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
[6] 王麦琪, 李彦军*, 袁寿其, 孟凡. 双向流道轴流泵装置的飞逸特性[J]. 排灌机械工程学报, 2018, 36(5): 384-390.
[7] 刘刚, 付强*, 朱荣生, 王秀礼, 张本营, 李梦圆. 超临界锅炉给水泵级间密封间隙流动特性[J]. 排灌机械工程学报, 2018, 36(5): 391-396.
[8] 韩伟,, 陈雨, 刘宜,*, 李光贤, 王洁, 王腾达. 水轮机活动导叶端面间隙磨蚀特性数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 404-412.
[9] 李岩,*, 吴志诚, 田川公太朗, 冯放,, 张婷婷, 白荣彬, 李建业. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419.
[10] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[11] 张坤,, 陈颂英,*. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.
[12] 马光飞,,*, 吴燕明,, 方勇,, 李超,, 郑寓,, 章蕾,. 涡流装置固相冲洗特性三维多相流动数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 334-339.
[13] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[14] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.
[15] 徐维晖, 侯晓*, 胡孟, 何小可, 王为术. 粗糙度对离心泵空化过程的影响[J]. 排灌机械工程学报, 2018, 36(3): 197-203.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved