排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (6): 461-466    DOI: 10.3969/j.issn.1674-8530.16.0110
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
混流式水泵水轮机驼峰区压力脉动特性
李琪飞1,2*, 王源凯1, 刘超1, 张建勋1, 张正杰1, 王仁本1
1.兰州理工大学能源与动力工程学院, 甘肃 兰州 730050; 2.甘肃省流体机械及系统重点实验室, 甘肃 兰州 730050
Pressure fluctuation characteristics of Francis pump turbine in the hump zone
LI Qifei1,2*, WANG Yuankai1, LIU Chao1, ZHANG Jianxun1, ZHANG Zhengjie1, WANG Renben1
1.College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2.Key Laboratory of Fluid Machinery and Systems, Gansu Province, Lanzhou, Gansu 730050, China
 全文: PDF (1599 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究混流式水泵水轮机在峰区内部流动的压力脉动特性,以某抽水蓄能电站模型水泵水轮机为研究对象,对模型机组进行了全流道非定常数值计算.结合试验数据,分析了泵工况下驼峰区流道内不同位置处压力脉动特征和流态特征,讨论了流量变化对机组压力脉动特性的影响.结果表明:驼峰区工况下,蜗壳出口的压力脉动主要受到其内部流动特性的影响,同时受到上游双列叶栅作用的影响,在驼峰区极小值工况点处其压力时域变化周期性被扰动;导叶后转轮前的压力脉动主频为低频,第2主频为9倍转频和18倍转频,压力脉动幅值随着流量减小而增大;锥管内压力脉动都属于低频压力脉动,在驼峰区极小值工况点处,锥管上游压力脉动受下游转轮-尾水管动静干涉作用影响较大,出现了高频成份的压力脉动.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李琪飞
*
王源凯
刘超
张建勋
张正杰
王仁本
关键词混流式水泵水轮机   驼峰区   非定常   内部流动   压力脉动     
Abstract: In order to study the pressure characteristics of Francis pump turbine flow in the peak zone inside, with a pumped storage station pump turbine as the research object, the whole flow channel unsteady numerical calculation was conducted for the model unit. Combined with the test data, the pressure fluctuation characteristics and flow characteristics at different positions in the hump flow under the pump operating conditions were aralyzed, and the impact of the flow on the unit pressure fluctuation characteristics was discussed. The results show that under the hump zone operating condition, the pressure pulsation at the volute outlet is mainly affected by the internal flow characteristics, at the same time is also affected by the upstream dual cascade role. The pressure time domain change periodicity at the minimal value point in the hump zone is disturbed. The pressure pulsation frequency between the runner and the guide vane is the low frequency, and the second frequency is 9 times and 18 times conversion frequencies. The pressure fluctuation amplitude increases with the flow rate decreasing. Cone tube pressure pulsation is the low-frequency pressure pulsation. The upstream pressure fluctuation of cone tube is greatly influenced by the dynamic interaction of the downstream runner-tail water pipe at the minimal value point in the hump zone, and there appears the pressure fluctuation of the high-frequency component
Key wordspump-turbine   hump characteristics zone   unsteady-flow   internal flow   pressure fluctuation   
收稿日期: 2016-05-20;
基金资助:

国家自然科学基金资助项目(51566009);甘肃省自然科学基金资助项目(1310RJZA023)

引用本文:   
李琪飞,*,王源凯等. 混流式水泵水轮机驼峰区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(6): 461-466.
LI Qi-Fei-,*,WANG Yuan-Kai- et al. Pressure fluctuation characteristics of Francis pump turbine in the hump zone[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(6): 461-466.
 
[1] 梅祖彦. 抽水蓄能发电技术[M]. 北京:机械工业出版社,2000.
[2] 胡旭光. 水泵水轮机不稳定性运行的初步探讨[J]. 水电站机电技术,2001(2):18-20.
[3] HU Xuguang. Preliminary study on the non-steady-ope-ration of pump-turbine[J]. Mechanical & electrical technique of hydropower station, 2001(2):18-20.(in Chinese)
[4] 徐宇,唐学林,吴玉林. 水泵水轮机转轮内水泵工况絮流分析[J]. 水力发电学报, 2000(3):75-83.
[5] XU Yu, TANG Xuelin, WU Yulin. Three-dimensional turbulent flow analysis through a pump-turbine runner at pump modes[J]. Journal of hydroelectric enginee-ring, 2000(3):75-83.(in Chinese)
[6] 陈顺义,李成军,周杰. 水泵水轮机稳定性预判与对策[J]. 水力发电,2011,37(14):50-54.
CHEN Shunyi, LI Chenjun, ZHOU Jie. Prognosis on the stability of pump-turbine and the countermeasures[J]. Water power, 2011,37(14):50-54.(in Chinese)
[7] BRAUN O, KUENY J L, AVELLAN F. Numerical analysis of flow phenomena related to the unstable energy-discharge characteristic of a pump-turbine in pump mode[C]//Proceedings of 2005 ASME Fluids Engineering Division Summer Meeting, New York:ASME, 2005:944-949.
[8] BACKMAN G. CFD validation of pressure fluctuations in a pump turbine[D]. Lulea: Lulea University of Technology, 2008.
[9] 王焕茂, 吴钢, 吴伟章,等. 混流式水泵水轮机驼峰区数值模拟及分析[J]. 水力发电学报, 2012, 31(6):253-258.
WANG Huanmao, WU Gang, WU Weigang, et al.Numerical simulation and analysis of the hump district of Francis pump-turbine[J].Journal of hydroelectric engineering, 2012,31(6):253-285.(in Chinese)
[10] 舒崚峰. 水泵水轮机驼峰区与“S”区数值模拟研究[D]. 哈尔滨:哈尔滨工业大学,2013.
[11] YAN J, KOUTNIK J, SEIDEL U, et al. Compressible simulation of rotor-stator interaction in pump-turbines[C]//Proceedings of 25th IAHR Symposium on Hydraulic Machinery and Systems. Bristol:Institute of Physics Publishing, 2010:012008.
[12] 王乐勤,刘锦涛,张乐福,等.水泵水轮机泵工况小流量波动特性[J]. 浙江大学学报(工学版),2011,45(7):1239-1243.
WANG Leqin, LIU Jintao, ZHANG Lefu, et al. Low flow′s fluctuation characteristics in pump-turbine′s pump mode[J]. Journal of Zhejiang University(engineering science), 2011,45(7):1239-1243.(in Chinese)
[13] 冉红娟,张瑶,罗先武,等.可逆式水轮机泵工况下驼峰现象的数值模拟[J]. 水力发电学报,2011,30(3):175-179.
RAN Hongjuan, ZHANG Yao, LUO Xianwu, et al. Numerical simulation of the positive-slope performance curve of a reversible hydro-turbine in pumping mode[J]. Journal of hydroelectric engineering, 2011,30(3):175-179.(in Chinese)
[14] 李德友,宫汝志,王洪杰,等.水泵水轮机不同导叶开口的驼峰特性[J]. 排灌机械工程学报,2016, 34(1): 1-8. 浏览
LI Deyou, GONG Ruzhi, WANG Hongjie, et al. Unstable head-flow characteristics of pump-turbine under different guide vane openings in pump mode[J]. Journal of drainage and irrigation machinery engineering, 2016, 34(1): 1-8.(in Chinese)
[15] 钱忠东,杨建东. 湍流模型对水轮机压力脉动数值预测的比较[J]. 水力发电学报, 2007, 26(6): 111-115.
QIAN Zhongdong, YANG Jiandong. Comparison of numerical simulation of pressure pulsation in Francis hydraulic turbine by different turbulence models[J]. Journal of hydroelectric engineering, 2007, 26(6): 111-115.(in Chinese)
[1] 唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
[2] 陈杰, 王勇, 刘厚林, 邵昌, 张翔*. 超低比转数离心泵的内部流动及非定常特性[J]. 排灌机械工程学报, 2018, 36(5): 377-383.
[3] 韩伟,, 李雪峰,*, 苏敏, 李仁年,, 陈昊,. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
[4] 何乃昌, 谈明高*, 刘厚林, 黄鑫, 吴贤芳. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
[5] 黄彪,吴钦,,王国玉. 非定常空化流动研究现状与进展[J]. 排灌机械工程学报, 2018, 36(1): 1-14.
[6] 高波1, 杜文强1, 杨丽1, 张宁1, 王浩宇1, 袁霄2. 蜗壳面积变化规律对低比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(9): 749-.
[7] 季磊磊, 李伟, 施卫东, 邵佩佩, 蒋小平. 叶片数对混流泵内部非定常压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(8): 666-.
[8] 李琪飞1, 2, 刘超1, 王源凯1. 部分负荷工况下水泵水轮机的空化特性[J]. 排灌机械工程学报, 2017, 35(8): 680-.
[9] 韩冬冬, 于凤荣, 张思青. 水泵水轮机水轮机工况全流道三维非定常数值模拟[J]. 排灌机械工程学报, 2017, 35(4): 325-332.
[10] 张琳, 施卫东, 张德胜, 石磊. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.
[11] 刘志超, 孔繁余, 王洋, 谢山峰, 赵立峰. 非等距叶片分布对旋涡自吸泵压力脉动的影响[J]. 排灌机械工程学报, 2017, 35(2): 113-118.
[12] 顾延东, 袁寿其, 裴吉, 刘永, 曹健. 导叶安装位置对混流泵压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 93-99.
[13] 李仁年,, 陈昊, 韩伟,, 李雪峰, 刘慧娟. 颗粒粒径对导叶式离心泵动静叶栅内流动的影响[J]. 排灌机械工程学报, 2017, 35(12): 1018-1023.
[14] 谈明高, 廉益超, 吴贤芳, 丁荣, 陈昆. 双流道泵内瞬态动力学特性[J]. 排灌机械工程学报, 2017, 35(12): 1024-1029.
[15] 朱明明, 黄彪, 王国玉, 王宁. 非定常空化流致噪声数值模拟研究[J]. 排灌机械工程学报, 2017, 35(11): 933-940.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved