排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (5): 404-412    DOI: 10.3969/j.issn.1674-8530.17.0188
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水轮机活动导叶端面间隙磨蚀特性数值模拟
韩伟1,2, 陈雨1, 刘宜1,2*, 李光贤1, 王洁1, 王腾达1
1.兰州理工大学能源与动力工程学院, 甘肃 兰州 730050; 2.甘肃省流体机械及系统重点实验室, 甘肃 兰州 730050
Numerical simulation of end surface erosion characteristics of hydro-turbine guide vane
HAN Wei1,2, CHEN Yu1, LIU Yi1,2*, LI Guangxian1, WANG Jie1, WANG Tengda1
1.College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2.Key Laboratory of Fluid Machinery and Systems, Gansu Province, Lanzhou, Gansu 730050, China
 全文: PDF (9641 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究水轮机活动导叶端面间隙固液两相流动的规律,以及间隙上下表面的磨损情况,基于Fluent软件的RNG k-ε湍流模型和DPM模型,结合水轮机活动导叶端面间隙流的简化模型(圆柱绕流和后台阶流),数值模拟了不同进口速度下,沙粒体积分数分别为1%,5%,7%,10%以及沙粒粒径分别为0.020,0.050,0.075,0.100 mm时,活动导叶端面间隙的三维非稳态流动.通过定常数值模拟得到不同工况下间隙上下表面的平均磨损率分布,分析磨蚀规律和磨蚀位置.结果表明:流场中平均磨损率分布受间隙流模型的结构和两相流参数设置影响较大.随着进口速度和沙粒体积分数增大,间隙流模型上下表面平均磨损率增大,磨损主要集中在轴前、台阶下游再附点位置以及间隙流出口处,最大平均磨损率约为2.0×10-6 kg/(m2·s).随着沙粒粒径增大,由于惯性力作用,模型上下表面平均磨损率减小;在沙粒粒径小于0.020 mm时,磨损情况相比其他粒径更严重,最大平均磨损率约为0.100 mm时的2倍.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩伟
陈雨
刘宜
*
李光贤
王洁
王腾达
关键词水轮机导叶   间隙流   平均磨损率   离散相模型   数值模拟     
Abstract: To study the solid-liquid two-phase flow features in the clearances between guide vane end surfaces and casing, as well as the erosion condition of two end surfaces, the unstead three-dimensio-nal flow in a cylinder and a backward-facing step flow channel, which is a simplified model of the end clearance flow in a real hydro-turbine guide vane, was numerically simulated based on the RNG k-ε turbulence model and discrete phase model(DPM)in Fluent. In simulations, the solid particle vo-lume fractions were 1%, 5%, 7% and 10%, the particle diameters were 0.020, 0.050, 0.075 and 0.100 mm, and different inlet velocities were used. Through steady numerical simulations, the distribution of average erosion rate on the upper and lower end surfaces was obtained, and the erosion pattern and locations were analyzed. The results indicate that the distribution of average erosion rate in flow field is closely related to the physics models and the parameter settings for the two-phase flow. With increasing inlet liquid velocity and particle volume fraction, the average erosion rate augments. The erosion positions mainly are located in the front of the cylinder, the reattachment point downstream the step and the outlet of the step. The maximum average erosion rate is about 2.0×10-6 kg/(m2·s). With increasing particle diameter, the average erosion rate decreases due to an increasing inertial force. When the particle diameter is less than 0.020 mm, heavier erosion occurs in comparison with the rate at large diameters, particularly, the maximum average erosion rate is about 2 times the rate at 0.100 mm particle diameter.
Key wordshydro-turbine guide vane   clearance flow   average erosional rate   DPM model   numerical simulation   
收稿日期: 2017-08-18;
基金资助:

国家自然科学基金资助项目(51669012);西华大学重点实验室开放基金资助项目(szjj2017-092)

引用本文:   
韩伟,,陈雨等. 水轮机活动导叶端面间隙磨蚀特性数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 404-412.
HAN Wei-,,CHEN Yu- et al. Numerical simulation of end surface erosion characteristics of hydro-turbine guide vane[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(5): 404-412.
 
[1] 杨从新, 董富弟, 程效锐, 等. 含沙水流中粒径对离心泵叶轮磨损特性影响的数值分析[J]. 兰州理工大学学报, 2014,40(4):45-50.
YANG Congxin, DONG Fudi, CHENG Xiaorui, et al. Numerical analysis of effect of sand particle size of silt-laden water flow on wear characteristics of centrifugal pump impeller[J]. Journal of Lanzhou University of Technology, 2014,40(4):45-50.(in Chinese)
[2] THAPA B S, THAPA B, ELEVIK M, et al. Optimizing runner blade profile of Francis turbine to minimize sediment erosion[C]//Proceedings of 26th IAHR Sympo-sium on Hydraulic Machinery and Systems. [S.l.]: IOP Publishing Ltd. 2012.
[3] 黄剑峰, 张立翔, 姚激, 等. 水轮机泥沙磨损两相湍流场数值模拟[J]. 排灌机械工程学报, 2016,34(2):145-150.
HUANG Jianfeng, ZHANG Lixiang, YAO Ji, et al. Numerical simulation of two-phase turbulent flow in Francis turbine passage on sediment erosion[J]. Journal of drainage and irrigation machinery engineering, 2016,34(2):145-150.(in Chinese)
[4] KOIRALA R, ZHU Baoshan, NEOPANE H P. Effect of guide vane clearance gap on Francis turbine performance[J]. Energies, 2016,9(4):275.
[5] 张广, 魏显著, 宋德强. 导叶端面间隙泥沙磨损数值预测研究[J]. 大电机技术, 2017(3):64-68.
[6] ZHANG Guang, WEI Xianzhu, SONG Deqiang. Numerical study on solid-liquid two-phase flow in francis turbine runner[J]. Large electric machine and hydraulic turbine, 2017(3):64-68.(in Chinese)
[7] THAPA B S, DAHLHAUG O G, THAPA B. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine[C]//Procee-dings of IOP Conference Series: Earth and Environmental Science, 2016,49(6):1-10.
[8] THAPA B S, DAHLHAUG O G, THAPA B. Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine[J]. Renewable and sustainable energy reviews, 2015,49:1100-1113.
[9] 王威. 圆柱绕流数值模拟[J]. 辽宁化工, 2016(7):877-878.
[10] WANG Wei. Numerical simulation of flow around a circular cylinder[J]. Liaoning chemical industry, 2016(7):877-878.(in Chinese)
[11] 邱骁, 丁珏, 王忠杰, 等. 湍流分离流中沙粒的扩散机制[J]. 上海大学学报(自然科学版), 2016,22(5):586-596.
QIU Xiao, DING Jue, WANG Zhongjie, et al. Particles diffusion mechanism in turbulent separation flow[J]. Journal of Shanghai University(natural science edition), 2016,22(5):586-596.(in Chinese)
[12] ZHANG Yuliang, LI Yi, ZHU Zuchao, et al. Computational analysis of centrifugal pump delivering solid-li-quid two-phase flow during startup period[J]. Chinese journal of mechanical engineering, 2014,27(1):178-185.
[13] HUANG Si, ZOU Wenlang, ZHOU Jinju, et al. Unsteady numerical simulation on solid-liquid flows and wear in a centrifugal pump based on DPM model[J]. Machine tool & hydraulics, 2016,44(6):1-5.
[14] ANSYS Inc. Ansys Fluent 12.0: theory guide[M]. [S.l.]: ANSYS Inc, 2009.
[15] 李亮, 申龙涉, 范开峰, 等. 弯管中多相流冲刷腐蚀数值模拟[J]. 辽宁石油化工大学学报, 2014,34(3):48-52.
LI Liang,SHEN Longshe,FAN Kaifeng, et al. Numerical simulation of bend multiphase flow erosion[J]. Journal of Liaoning Shihua University, 2014,34(3):48-52.(in Chinese)
[1] 于贤磊, 陈松山, 杨夏威, 周明耀*. 大型灌溉管网减压阀特性数模分析与试验研究[J]. 排灌机械工程学报, 2018, 36(9): 824-828.
[2] 陈为升, 黎耀军*, 严海军, 张铭振. 进水方式对卷盘式喷灌机水涡轮水力性能影响的数值模拟[J]. 排灌机械工程学报, 2018, 36(9): 845-850.
[3] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[4] 唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
[5] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[6] 潘志军, 徐磊*, 沈晓燕, 洪飞, 张浩. 杭州八堡泵站斜式泵装置流道水力优化[J]. 排灌机械工程学报, 2018, 36(6): 501-508.
[7] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
[8] 王麦琪, 李彦军*, 袁寿其, 孟凡. 双向流道轴流泵装置的飞逸特性[J]. 排灌机械工程学报, 2018, 36(5): 384-390.
[9] 刘刚, 付强*, 朱荣生, 王秀礼, 张本营, 李梦圆. 超临界锅炉给水泵级间密封间隙流动特性[J]. 排灌机械工程学报, 2018, 36(5): 391-396.
[10] 李岩,*, 吴志诚, 田川公太朗, 冯放,, 张婷婷, 白荣彬, 李建业. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419.
[11] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[12] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[13] 张坤,, 陈颂英,*. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.
[14] 马光飞,,*, 吴燕明,, 方勇,, 李超,, 郑寓,, 章蕾,. 涡流装置固相冲洗特性三维多相流动数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 334-339.
[15] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved