排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (5): 391-396    DOI: 10.3969/j.issn.1674-8530.16.0286
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
超临界锅炉给水泵级间密封间隙流动特性
刘刚, 付强*, 朱荣生, 王秀礼, 张本营, 李梦圆
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Characteristics of flow through gap of interstage seal in supercritical boiler feed pump
LIU Gang, FU Qiang*, ZHU Rongsheng, WANG Xiuli, ZHANG Benying, LI Mengyuan
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (2262 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究超临界锅炉给水泵不同间隙下间隙流道的内部流动瞬态特性,建立不同间隙大小的间隙流道模型并对其进行数值模拟,得到间隙流道在轴向和环向上的压力、速度分布以及在进口压力脉动作用下轴向各处的压力变化情况.结果表明:在轴向上,间隙流道内液流的静压和流速具有3个阶段,分别为突降段、上升段和线性下降段,其中间隙越大,其静压越小流速越快;在间隙流道环形截面上静压的分布并不均匀,而在圆周方向上具有一定的周期性,在间隙流道环形截面上的速度的高速区主要出现在靠近内壁旋转面一侧,低速区主要出现在靠近外壁静止面一侧;在进口压力脉动作用下,间隙流道的入口、中部的压力变化频率是一致的,尾部静压主要由出口压力决定,其压力只在一定的值内上下波动.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘刚
付强*
朱荣生
王秀礼
张本营
李梦圆
关键词超临界锅炉给水泵   间隙   静压   流速   数值模拟     
Abstract: To study the characteristics of internal flow in the gap of interstage seal in supercritical boi-ler feed pumps, a few interstage seal models with various gap sizes were established and the fluid flows in these seals were simulated numerically. The pressure and velocity distributions in the axial and circumferential directions, and the pressure variation along the axial direction were calculated under a pulse inlet pressure. The results show that the fluid hydrostatic pressure and velocity have three variation stages through the seal in the axial direction, namely sharp drop, ascendant and linearly descen-dent stages. The greater the gap′s size is, the smaller the static pressure is, and the faster the velocity is. The static pressure distribution is not uniform in the circular cross-sections and presents a certain periodicity in the circumferential direction. In the annular cross-sections the high-velocity region appears near the rotating inner wall, but the low-velocity region occurs near the stationary outer wall. In addition, under a pulse inlet pressure, the pressure pulsating frequency in the middle and at the outlet of the seal is the same as the frequency at the inlet. The tail pressure is mainly determined by the outlet pressure, thus it fluctuates only within a certain amplitude.
Key wordssupercritical boiler feed pump   clearances   static pressure   velocity   numerical simulation   
收稿日期: 2016-11-18;
基金资助:

国家自然科学基金面上资助项目(51379091);国家自然科学基金青年资助项目(51509112);江苏省重点研发计划-产业前瞻与共性关键技术(BE2016160)

引用本文:   
刘刚,付强*,朱荣生等. 超临界锅炉给水泵级间密封间隙流动特性[J]. 排灌机械工程学报, 2018, 36(5): 391-396.
LIU Gang,FU Qiang-*,ZHU Rong-Sheng et al. Characteristics of flow through gap of interstage seal in supercritical boiler feed pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(5): 391-396.
 
[1] HUANU Si,YANU Fuxiang,GUO Jing. Numerical simulation of 3D unsteady flow in centrifugal pump by dyna-mic mesh technique[J]. Procedia engineering,2013,61: 270-275.
[2] TVERDOKHLEB I,KNYAZEVA E,BIRUKOV A,et al. About designing the flow part of a multi-stage pump with a minimum radial dimensions[J]. Procedia enginee-ring,2012, 39:84-90.
[3] 张学静,杨军虎.多级泵内部流场的三维数值模拟及性能预测[J].流体机械,2011,39(8): 24-28.
ZHANG Xuejing,YANG Junhu. Three-dimensional numerical simulation and performance prediction of multistage pump[J]. Fluid machinery,2011,39(8): 24-28.(in Chinese)
[4] CONSTANTINESCU V N. Basic relationships in turbulent lubrication and their extension to include thermal effects[J]. Journal of lubrication technology,1973, 95(2): 147-154.
[5] HIRS G G. A bulk-flow theory for turbulence in lubricant films[J]. Journal of lubrication technology, 1973,95(2):137-145.
[6] ELROD H G,NG C W. A theory for turbulent fluid films and its application to bearings[J].Journal of lubrication technology,1967,89(3):346-362.
[7] GUINZBURG A,BRENNEN C E,ACASTO A J, et al. Experimental results for the rotordynamic characteristics of leakage flows in centrifugal pumps[J]. Journal of fluids engineering,1994,116(1): 110-115.
[8] KIM E,PALAZZOLO A. Rotordynamic force prediction of a shrouded centrifugal pump impeller-part 1: numeri-cal analysis[J]. Journal of vibration and acoustics,2016, 138(3):1-10.
[9] DING H,VISSER F C,JIANG Y,et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications[J].Journal of fluids engineering,2011,133(1): 1-14.
[10] 张塬东, 张琼, 吴大转, 等.立式双级自吸泵水力性能分析及内部结构改进[J]. 流体机械, 2017, 45(9): 33-39.
ZHANG Yuandong, ZHANG Qiong,WU Dazhuan, et al. Improvement design of a vertical double-stage self-priming pump[J]. Fluid machinery, 2017, 45(9):33-39.(in Chinese)
[11] 李文广,费振桃,蔡永雄. 离心油泵叶轮口环间隙对性能的影响[J].水泵技术,2004(5): 7-13.
[12]   LI Wenguang, FEI Zhentao, CAI Yongxiong. Effect of clearance of wear-ring on the centrifugal oil pump[J]. Pump technology,2004(5): 7-13.(in Chinese)
[13] 郭豹, 刘厚林, 王纳秀,等.高温熔盐泵的模态计算与分析[J]. 流体机械, 2016, 44(3):45-49.
GUO Bao,LIU Houlin,WANG Naxiu,et al. Modal ana-lysis of molten salt pump at high temperature[J]. Fluid machinery, 2016, 44(3):45-49.(in Chinese)
[14] 赵伟国.基于CFD的离心泵口环间隙流动研究[D].武汉:华中科技大学,2006.
[15] 吴大转,许斌杰,武鹏,等. 多级离心泵内部间隙流动与泄漏损失[J]. 浙江大学学报(工学版),2011,45(8):1393-1398.
WU Dazhuan,XU Binjie,WU Peng,et al. Internal clea-rance flow and leakage loss in multistage centrifugal pump[J]. Journal of Zhejiang University(engineering science), 2011, 45(8):1393-1398.(in Chinese)
[16] HIRANO T,GUO Zenglin, GORDON K R,et al. Application of computational fluid dynamics analysis for rotating machinery——part II: labyrinth seal analysis[J]. Journal of engineering for gas turbines and power, 2005, 127:820-826.
[17] 蒋庆磊,翟璐璐,吴大转,等. 多级离心泵内叶轮出口压力脉动研究[J]. 工程热物理学报,2012,33(4):599-602.
JIANG Qinglei, ZHAI Lulu, WU Dazhuan, et al. Pressure fluctuation at impeller outlet in multistage pump[J]. Journal of engineering thermophysics,2012,33(4): 599-602.(in Chinese)
[18] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社,2011.
[1] 于贤磊, 陈松山, 杨夏威, 周明耀*. 大型灌溉管网减压阀特性数模分析与试验研究[J]. 排灌机械工程学报, 2018, 36(9): 824-828.
[2] 陈为升, 黎耀军*, 严海军, 张铭振. 进水方式对卷盘式喷灌机水涡轮水力性能影响的数值模拟[J]. 排灌机械工程学报, 2018, 36(9): 845-850.
[3] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[4] 唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
[5] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[6] 潘志军, 徐磊*, 沈晓燕, 洪飞, 张浩. 杭州八堡泵站斜式泵装置流道水力优化[J]. 排灌机械工程学报, 2018, 36(6): 501-508.
[7] 程效锐,*, 符丽, 包文瑞. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
[8] 王麦琪, 李彦军*, 袁寿其, 孟凡. 双向流道轴流泵装置的飞逸特性[J]. 排灌机械工程学报, 2018, 36(5): 384-390.
[9] 韩伟,, 陈雨, 刘宜,*, 李光贤, 王洁, 王腾达. 水轮机活动导叶端面间隙磨蚀特性数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 404-412.
[10] 李岩,*, 吴志诚, 田川公太朗, 冯放,, 张婷婷, 白荣彬, 李建业. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419.
[11] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[12] 张坤,, 陈颂英,*. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.
[13] 马光飞,,*, 吴燕明,, 方勇,, 李超,, 郑寓,, 章蕾,. 涡流装置固相冲洗特性三维多相流动数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 334-339.
[14] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[15] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved