排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (5): 377-383    DOI: 10.3969/j.issn.1674-8530.16.0278
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
超低比转数离心泵的内部流动及非定常特性
陈杰1, 王勇1, 刘厚林1, 邵昌1, 张翔2*
1.江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013; 2.西华大学流体及动力机械教育部重点实验室, 四川 成都 610039
Internal flow and analysis of its unsteady characteristics in centrifugal pump with ultra-low specific-speed
CHEN Jie1, WANG Yong1, LIU Houlin1, SHAO Chang1, ZHANG Xiang2*
1.National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, Sichuan 610039, China
 全文: PDF (2260 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为全面地研究超低比转数离心泵的内部流动和非定常特性,以一台比转数ns=25的超低比转数离心泵为研究对象,对其进行三维非定常数值计算,并与试验结果进行对比,进而对内部流场、叶轮上的径向力和蜗壳各断面的压力脉动进行分析.研究结果表明:在不同流量工况下,叶轮流道内存在数量不等、大小不一的旋涡;靠近隔舌的2个相邻流道内,在叶轮出口边工作面的位置存在高流速区域,随着流量的增大,此处高流速区域逐渐消失;在大流量工况下,低速区面积逐渐减小,旋涡区的范围和数量逐渐减少,叶轮内相对速度分布逐渐变均匀;叶轮上的径向力大小和方向时刻变化,呈现六角星型分布,径向力脉动的主要激励频率均为叶频及其整数倍频;蜗壳各断面内压力脉动峰值随着断面变化逐渐增大,蜗壳各断面内压力脉动的主要激励频率均为叶频及其整数倍频,说明叶轮出口与蜗壳的耦合作用是蜗壳内压力脉动的主要影响因素.研究结果可为超低比转数离心泵的水力优化设计和合理运行区间的选择提供一定参考.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈杰
王勇
刘厚林
邵昌
张翔*
关键词超低比转数离心泵   内流模拟   径向力   压力脉动     
Abstract: In order to explore internal flow and its unsteady characteristics in ultra-low specific-speed centrifugal pumps more comprehensively, an ultra-low specific-speed centrifugal pump with a specific-speed ns=25 was chosen as a study object. Then numerical simulations of the unsteady three-dimensional fluid flow in the pump were carried out. Finally, the internal flow field, radial thrust on the impeller and the pressure fluctuation of fluid in each section of the volute were analyzed. The results show that there appears vortices in various sizes and numbers in flow channels of the impeller under different flow conditions. A high velocity zone is found in two adjacent channels near the tongue, however, the zone disappears gradually with the increase of flow rate. Under high flow rate conditions, the area of the low velocity zone decreases gradually, the size and number of vortices reduce steadily, and the rela-tive velocity distribution in the impeller becomes uniform gradually. The orientation and magnitude of radial thrust on the impeller vary constantly, showing a hexagram pattern. The amplitude of radial thrust decreases gradually with increasing flow rate, but its main excitation frequencies are all the blade passing frequency or its integer multiples.The peak pressure fluctuation in each section of the volute decreases along the flow path and the main excitation frequencies are all the blade passing frequency or its integer multiples. This fact suggests that the impeller-volute interaction is one major factor influencing pressure fluctuation in the volute.These results have provided useful reference for optimum design of the ultra-low specific-speed centrifugal pump and selection of its feasible operating flow rate range.
Key wordsultra-low specific-speed centrifugal pump   internal flow simulation   radial force   pressure fluctuation   
收稿日期: 2016-11-10;
基金资助:

国家自然科学基金资助项目(51309120);江苏省产学研联合创新资金-前瞻性联合研究项目(BY2015064-10);江苏高校优势学科建设工程项目;流体及动力机械教育部重点实验室(西华大学)开放课题(szjj2016-068)

引用本文:   
陈杰,王勇,刘厚林等. 超低比转数离心泵的内部流动及非定常特性[J]. 排灌机械工程学报, 2018, 36(5): 377-383.
CHEN Jie-,WANG Yong-,LIU Hou-Lin- et al. Internal flow and analysis of its unsteady characteristics in centrifugal pump with ultra-low specific-speed[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(5): 377-383.
 
[1] 刘元义,衣振芹.超低比转速离心泵的研究[J].机械工程与自动化, 2008(2):198-200.
[2] LIU Yuanyi, YI Zhenqin. Study on super-low specific speed centrifugal pump[J]. Mechanical engineering & automation,2008(2):198-200.(in Chinese)
[3] 齐学义,刘永明,胡家旺,等. 提高超低比转数离心泵效率的方法[J]. 水电能源科学,2011,29(2):118-120.
QI Xueyi,LIU Yongming,HU Jiawang, et al. Method of improving efficiency of low specific speed centrifugal pump[J]. Water resources and power,2011,29(2):118-120.(in Chinese)
[4] 马新华, 何勇冠, 陆伟刚,等. 超低比转数多级离心泵水力优化与性能试验[J]. 排灌机械工程学报,2016, 34(9):755-760. 浏览
MA Xinhua,HE Yongguan,LU Weigang,et al.Hydraulic optimization and performance test of super low-specific-speed multistage centrifugal pump[J].Journal of drai-nage and irrigation machinery engineering, 2016,34(9):755-760.(in Chinese)
[5] 袁寿其, 王文杰, 裴吉,等. 低比转数离心泵的多目标优化设计[J]. 农业工程学报, 2015, 31(5):46-52.
YUAN Shouqi, WANG Wenjie, PEI Ji, et al. Multi-objective optimization of low-specific-speed centrifugal pump[J]. Transactions of the CSAE, 2015, 31(5): 46-52.(in Chinese)
[6] 王洋,刘洁琼.超低比转数离心泵叶轮切割的三维流场数值模拟[J].农业机械学报,2012,43(5):79-83.
WANG Yang, LIU Jieqiong. Impeller trim of super-low specific speed centrifugal pump based on numerical simu-lation of 3D flow field[J]. Transactions of the CSAM, 2012,43(5):79-83.(in Chinese)
[7] 邱铖, 方祥军. 带分流叶片的低比转速离心泵的特性研究[J]. 流体机械, 2017, 45(6):1-5.
QIU Cheng, FANG Xiangjun. Characteristics research of a low-specific-speed centrifugal pump with splitter blades[J]. Fluid machinery, 2017, 45(6):1-5.(in Chinese)
[8] WESTRA R W, BROERSMA L, ANDEL K V, et al. PIV measurements and CFD computations of secondary flow in a centrifugal pump impeller[J]. Journal of fluids engineering, 2010, 132(6):153-162.
[9] 杨从新,崔宗辉. 叶轮流道扩散度对超低比转数离心泵性能的影响[J]. 兰州理工大学学报, 2015, 41(6):48-53.
YANG Congxin, CUI Zonghui. Effect of impeller passage expansibility on performance of centrifugal pump with ultra-low specific speed[J]. Journal of Lanzhou University of Technology, 2015, 41(6):48-53.(in Chinese)
[10] 崔宝玲, 方晨, 葛明亚. 低比转数离心泵内部流动特性和外特性试验[J]. 排灌机械工程学报, 2016,34(5):375-380. 浏览
CUI Baoling, FANG Chen, GE Mingya. Internal flow characteristics and performance test of low specific-speed centrifugal pumps[J]. Journal of drainage and irrigation machinery engineering,2016,34(5):375-380.(in Chinese)
[11] BRAUN O. Part load flow in radial centrifugal pumps[M]. [S.l.]: Epfl, 2009.
[12] 马皓晨, 丁荣, 杨东升. 低比转数离心泵驼峰现象的 CFD 分析[J]. 流体机械, 2013,41(12):43-47.
MA Haochen,DING Rong,YANG Dongsheng. CFD research on hump phenomenon of low specific speed centrifugal pump[J]. Fluid machinery, 2013, 41(12):43-47.(in Chinese)
[13] SANO T, YOSHIDA Y, TSUJIMOTO Y, et al. Numerical study of rotating stall in a pump vaned diffuser[J]. Journal of fluids engineering,2002,124(2):192-201.
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal,1994,32(8):1598-1605.
[15] MENTER F R. Zonal two-equation k-ω turbulence model for aerodynamic flows[J].AIAA journal,1993,31(9):1993-2006.
[16] MENTER F R,KUNTZ M,LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, heat and mass transfer, 2003, 4(1):625-632.
[1] 李琪飞,*, 王源凯, 刘超, 张建勋, 张正杰, 王仁本. 混流式水泵水轮机驼峰区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(6): 461-466.
[2] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.
[3] 高波*, 杨丽, 张宁, 杜文强, 袁霄. 蜗壳隔舌半径对离心泵性能及水力载荷特性的影响[J]. 排灌机械工程学报, 2018, 36(3): 185-190.
[4] 韩伟,, 李雪峰,*, 苏敏, 李仁年,, 陈昊,. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
[5] 何乃昌, 谈明高*, 刘厚林, 黄鑫, 吴贤芳. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
[6] 苏少华,, 刘竹青,*. 载荷分布对导叶式混流泵水力性能影响[J]. 排灌机械工程学报, 2018, 36(12): 1233-1239.
[7] 蔡晓彤, 施卫东*, 张德胜, 张俊杰, 石磊. 基于直接边界元法的潜水排污泵内流噪声数值模拟[J]. 排灌机械工程学报, 2018, 36(12): 1264-1269.
[8] 李琪飞,, 张震, 李仁年,, 宋启策, 张建勋. 带MGV装置水泵水轮机无叶区压力脉动特性[J]. 排灌机械工程学报, 2018, 36(12): 1270-1275.
[9] 高波1, 杜文强1, 杨丽1, 张宁1, 王浩宇1, 袁霄2. 蜗壳面积变化规律对低比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(9): 749-.
[10] 季磊磊, 李伟, 施卫东, 邵佩佩, 蒋小平. 叶片数对混流泵内部非定常压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(8): 666-.
[11] 王家斌, 王逸云, 袁寿其, 裴吉. 两级中开泵级间隔板对双吸叶轮径向力的影响[J]. 排灌机械工程学报, 2017, 35(7): 564-570.
[12] 韩冬冬, 于凤荣, 张思青. 水泵水轮机水轮机工况全流道三维非定常数值模拟[J]. 排灌机械工程学报, 2017, 35(4): 325-332.
[13] 张琳, 施卫东, 张德胜, 石磊. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.
[14] 刘志超, 孔繁余, 王洋, 谢山峰, 赵立峰. 非等距叶片分布对旋涡自吸泵压力脉动的影响[J]. 排灌机械工程学报, 2017, 35(2): 113-118.
[15] 顾延东, 袁寿其, 裴吉, 刘永, 曹健. 导叶安装位置对混流泵压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 93-99.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved