排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (5): 369-376    DOI: 10.3969/j.issn.1674-8530.16.0203
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
核主泵空化流动对能量转换的影响
程效锐1,2*, 符丽1, 包文瑞1
1.兰州理工大学能源与动力工程学院, 甘肃 兰州 730050; 2.甘肃省流体机械及系统重点实验室, 甘肃 兰州 730050
Effect of cavitation flow on energy transfer in nuclear main pump
CHENG Xiaorui1,2*, FU Li1, BAO Wenrui1
(1.College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2.Key Laboratory of Fluid Machinery and Systems, Gansu Province, Lanzhou, Gansu 730050, China
 全文: PDF (3768 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究核主泵内部空化流动对能量转换的影响,采用RNG k-ε湍流模型和Rayleigh-Plesset空化模型对设计工况下核主泵模型泵进行了全流场空化模拟,得到核主泵发生空化时叶轮内气泡分布规律.选取叶片吸力面的前盖板流线和后盖板流线,通过分析不同空化工况下这两条流线上的动扬程与静扬程变化规律,研究核主泵发生空化时,空化流动对叶轮内能量转换的影响.结果表明:核主泵内流体的能量主要由叶轮中后段提供,且从前盖板到后盖板,叶片做功能力逐渐减弱;空化干扰叶轮内流体流动,导致空化区域相对速度增大,压力减小,在气泡密集区域,叶片做功能力几乎为0;随着空化程度加剧,无空化区动扬程增大,静扬程减小,且静扬程减小幅度大于动扬程增大幅度,从而引起泵扬程和效率下降;随着空化程度加剧,动、静扬程突变程度加剧,增大了叶轮内的流动损失,进而导致泵扬程及效率进一步下降.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
程效锐
*
符丽
包文瑞
关键词核主泵   空化流   能量转换   数值模拟     
Abstract: In order to study influences of cavitating flow on energy transfer in nuclear main pumps, the cavitating flow field in a nuclear main pump model was carried out under design condition using the RNG k-ε turbulence and Rayleigh-Plesset cavitation models, then vapour bubble distribution features in the impeller were attained. The influences of cavitating flow on the energy transfer in the impeller were studied under different cavitation conditions by analysing variations of fluid kinetic and sta-tic heads along the two streamlines on the shroud and hub. Results showed that the energy of fluid was provided by the impeller in the middle and after-middle portions of blade, and the working capacity of blades decreased gradually from the shroud to the hub. Cavitation interfered with the flow in the impeller, leading to an increased relative velocity and a decreased pressure in cavities, and the working capacity of blades was almost zero in a zone with dense vapour bubbles. In non-cavitation zones, the kinetic head rose but the static head declined along the streamlines with the development of cavitation. Because the decrease in the static head was greater than the increase in the kinetic head, the pump head and efficiency had to be reduced. In addition, with the development of cavitation, the sudden change in both heads were intensified in the cavitation zones, resulting in an increased hydraulic loss in the impeller, eventually, the pump head and efficiency dropped off even further.
Key wordsnuclear main pump   cavitation flow   energy transfer   numerical simulation   
收稿日期: 2016-08-30;
基金资助:

国家自然科学基金资助项目(51469013)

引用本文:   
程效锐,*,符丽等. 核主泵空化流动对能量转换的影响[J]. 排灌机械工程学报, 2018, 36(5): 369-376.
CHENG Xiao-Rui-,*,FU Li- et al. Effect of cavitation flow on energy transfer in nuclear main pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(5): 369-376.
 
[1] 王秀礼, 王鹏, 袁寿其, 等. 核主泵空化过渡过程水动力特性研究[J]. 原子能科学技术,2014,48(8): 1421-1427.
WANG Xiuli, WANG Peng, YUAN Shouqi, et al. Analysis on transient hydrodynamic characteristics of cavitation process for reactor coolant pump[J]. Atomic energy science and technology, 2014, 48(8):1421-1427.(in Chinese)
[2] 王秀礼, 袁寿其, 朱荣生, 等. 隐性汽蚀过渡过程主泵叶轮内瞬变流动特性研究[J]. 核动力工程, 2013, 34(3):71-76.
WANG Xiuli, YUAN Shouqi, ZHU Rongsheng, et al. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process[J]. Nuclear power engineering,2013,34(3):71-76.(in Chinese)
[3] 付强, 曹梁, 朱荣生, 等. 空化模型热力学修正的核主泵空化研究[J]. 核动力工程, 2015, 36(6):128-132.
FU Qiang, CAO Liang, ZHU Rongsheng, et al. Analysis of cavitation of thermodynamic cavitation model for reactor coolant pump[J]. Nuclear power engineering, 2015, 36(6):128-132.(in Chinese)
[4] 林茵. CAP1400核主泵空化流场特性分析[D]. 大连:大连理工大学, 2015.
[5] 朱荣生, 陈宗良, 王秀礼,等. CAP1400核主泵空化特性数值研究[J]. 排灌机械工程学报, 2016, 34(6):490-495. 浏览
ZHU Rongsheng, CHEN Zongliang, WANG Xiuli, et al. Numerical study on cavitation characteristics of CAP1400 nuclear main coolant pump[J]. Journal of drainage and irrigation machinery engineering, 2016, 34(6):490-495.(in Chinese)
[6] 时素果, 王国玉, 胡常莉, 等. 不同温度水体空化水动力脉动特性的试验研究[J]. 机械工程学报, 2014, 50(8):174-181.
SHI Suguo, WANG Guoyu, HU Changli, et al. Experimental study on hydrodynamic characteristics of cavita-ting flows around hydrofoil under different water temperatures[J]. Journal of mechanical engineering, 2014, 50(8):174-181.(in Chinese)
[7] 张玉. 压水堆核主泵流场数值模拟和空化分析[D]. 杭州:浙江大学, 2011.
[8] RAHIM F C, RAHGOSHAY M, MOUSAVIAN S K. A study of large break LOCA in the AP1000 reactor containment[J]. Progress in nuclear energy, 2012, 54(1):132-137.
[9] 司乔瑞, 袁寿其, 李晓俊,等. 空化条件下离心泵泵腔内不稳定流动数值分析[J]. 农业机械学报, 2014, 45(5): 84-90.
SI Qiaorui, YUAN Shouqi, LI Xiaojun, et al. Numerical simulation of unsteady cavitation flow in the casing of a centrifugal pump [J]. Transactions of the CSAM, 2014, 45(5):84-90.(in Chinese)
[10] 赵浩儒,杨帆,吴俊欣,等.立式轴流泵装置压力脉动特性的试验[J]. 流体机械, 2017, 45(7):12-16,27.
ZHAO Haoru,YANG Fan,WU Junxin,et al. Experimental analysis on pressure fluctuation of multiple conditions in axial-flow pumping system[J]. Fluid machi-nery, 2017, 45(7):12-16,27.(in Chinese)
[11] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence basic theory[J]. Journal of scientific computing, 1986, 1(1): 1-51
[12] 关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
[13] 程效锐. 螺旋离心泵内能量转换特性及设计方法研究[D]. 兰州:兰州理工大学, 2014.
[1] 于贤磊, 陈松山, 杨夏威, 周明耀*. 大型灌溉管网减压阀特性数模分析与试验研究[J]. 排灌机械工程学报, 2018, 36(9): 824-828.
[2] 陈为升, 黎耀军*, 严海军, 张铭振. 进水方式对卷盘式喷灌机水涡轮水力性能影响的数值模拟[J]. 排灌机械工程学报, 2018, 36(9): 845-850.
[3] 杨洋, 朱焱*, 伍靖伟, 余乐时, 杨金忠. 河套灌区井渠结合地下水数值模拟及均衡分析[J]. 排灌机械工程学报, 2018, 36(8): 732-737.
[4] 唐苑峰, 袁建平*, 司乔瑞, 张克玉, 陆荣. 基于Eulerian-Eulerian模型的轴流泵气液两相流动数值研究[J]. 排灌机械工程学报, 2018, 36(6): 478-484.
[5] 钟伟源*, 朱荣生, 王秀礼, 卢永刚, 刘永, 康俊鋆. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报, 2018, 36(6): 485-493.
[6] 潘志军, 徐磊*, 沈晓燕, 洪飞, 张浩. 杭州八堡泵站斜式泵装置流道水力优化[J]. 排灌机械工程学报, 2018, 36(6): 501-508.
[7] 王麦琪, 李彦军*, 袁寿其, 孟凡. 双向流道轴流泵装置的飞逸特性[J]. 排灌机械工程学报, 2018, 36(5): 384-390.
[8] 刘刚, 付强*, 朱荣生, 王秀礼, 张本营, 李梦圆. 超临界锅炉给水泵级间密封间隙流动特性[J]. 排灌机械工程学报, 2018, 36(5): 391-396.
[9] 韩伟,, 陈雨, 刘宜,*, 李光贤, 王洁, 王腾达. 水轮机活动导叶端面间隙磨蚀特性数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 404-412.
[10] 李岩,*, 吴志诚, 田川公太朗, 冯放,, 张婷婷, 白荣彬, 李建业. 偏心风轮结构对垂直轴风力机气动特性影响数值模拟[J]. 排灌机械工程学报, 2018, 36(5): 413-419.
[11] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[12] 钟华舟*, 朱荣生, 王秀礼, 张本营, 卢永刚. 启动加速度对核主泵叶轮内部流动的影响[J]. 排灌机械工程学报, 2018, 36(4): 300-306.
[13] 吕延光, 吴景鑫*, 范业娇, 胡雷. 核主泵紧急注入水供应系统结构的改进及试验[J]. 排灌机械工程学报, 2018, 36(4): 283-287.
[14] 张坤,, 陈颂英,*. 自激脉冲空化喷嘴三维非稳态流动的数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 288-293.
[15] 马光飞,,*, 吴燕明,, 方勇,, 李超,, 郑寓,, 章蕾,. 涡流装置固相冲洗特性三维多相流动数值模拟[J]. 排灌机械工程学报, 2018, 36(4): 334-339.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved