排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2010, Vol. 28 Issue (2): 127-131    DOI: 10.3969/j.issn.1674—8530.2010.02.008
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于CFD的高温减压塔底泵次级叶轮优化设计
胡敬宁, 刘三华, 江  伟, 黄铭科, 张  丽
(江苏大学 流体机械工程技术研究中心, 江苏 镇江 212013)
Optimal design for secondary impeller of decompression tower bottom pump with high temperature by CFD
Hu Jingning, Liu Sanhua, Jiang Wei, Huang Mingke, Zhang Li
(Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China)
 全文: PDF (348 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 运用Fluent软件,利用有限体积法对雷诺时均Navier-Stokes方程进行数值离散,采用标准k-ε湍流模型及SIMPLEC算法进行求解,对9组由不同出口宽度的次级叶轮与不同喉部面积的蜗壳所组合成的高温减压塔底泵的次级内部流场进行了数值模拟与性能预测,基于预测结果绘制了性能曲线,并分析了叶轮出口宽度与蜗壳喉部面积对性能的影响.分析结果表明:随着喉部面积的增大,蜗壳进口宽度增大,小流量区蜗壳中更易产生回流,致使扬程降低,高效区向大流量偏移;增大叶轮出口宽度,可扩大高效范围.分析结果为高温减压塔底泵次级叶轮的优化设计提供了参考,选择C-b组合为最终优选方案.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡敬宁
刘三华
黄铭科
丽
关键词高温减压塔底泵   次级叶轮   内部流场   数值模拟   性能预测     
Abstract: Nine groups of secondary internal flows of the decompression tower bottom pump on high temperature were simulated by Fluent, which consisted of the secondary impellers with different outlet widths and the volutes with different throat opening areas, and their performance characteristics were predicted by using finite volume method to disperse Reynolds-Averaged Navier-Stokes(RANS) equations, stan dard k-ε turbulence model and SIMPLEC algorithm. According to the predicted results, the perfor mance curves were plotted and the influence caused by the outlet widths of the impellers and the throat opening areas of the volutes were analyzed. The analyzing results indicate that with the throat opening area increasing, the inlet width of volute increases, the back flow easily emerges at small flow rate, the head reduces, and high efficiency area moves to large flow, increasing the impeller outlet width can enlarge high effective area range. It provides reference for the optimal design of the pump, and the combination C-b is considered to be the best option.
Key wordsdecompression tower bottom pump on high temperature   secondary impeller   internal flows   numerical simulation   performance prediction   
收稿日期: 2009-10-19; 出版日期: 2010-03-30
基金资助:

中石化总公司科技国产化项目(306030); 江苏大学高级人才科研启动基金资助项目(07JDG065)

通讯作者: 胡敬宁(1962-),男,安徽安庆人,研究员(hujingning@263.net),主要从事流体机械及工程研究.   
作者简介: 刘三华(1983-),女,湖南邵阳人,硕士研究生(sanhuayou@163.com),主要从事流体机械研究.
引用本文:   
胡敬宁,刘三华,江等. 基于CFD的高温减压塔底泵次级叶轮优化设计[J]. 排灌机械工程学报, 2010, 28(2): 127-131.
HU Jing-Ning,LIU San-Hua,JIANG et al. Optimal design for secondary impeller of decompression tower bottom pump with high temperature by CFD[J]. Journal of Drainage and Irrigation Machinery Engin, 2010, 28(2): 127-131.
 
[1] Hornsby C. CFD—driving pump design forward[J]. World Pumps, 2002(431):18-22.
[2] González J, Fernández J, Blanco E, et al. Numerical simulation of the dynamic effects due to impeller volute interaction in a centrifugal pump[J]. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124(2):348-355.
[3] Byskov R K, Jacobsen C B, Pedersen N. Flow in a centrifugal pump impeller at design and off design conditions—Part Ⅱ:large eddy simulations[J]. Journal of Fluids Engineering, 2003, 125(1):73-83.
[4] 张楚华,谷传纲,苗永淼.离心叶轮及无叶扩器内湍流的非结构化网格数值解法[J].工程热物理学报,2000,21(4):446-450.
Zhang Chuhua, Gu Chuangang, Miao Yongmiao. Numerical simulation of turbulent flows in backswept impeller and vaneless diffuser[J]. Journal of Engineering Thermophysics, 2000,21(4):446-450. (in Chinese)
[5] 龙新平,关运生,韩宁,等.可调式射流泵性能的数值模拟[J].排灌机械,2008,26(6):1-5.
Long Xinping, Guan Yunsheng, Han Ning, et al. Numerical simulation on performance of self regulating jet pump[J]. Drainage and Irrigation Machinery, 2008, 26(6):1-5.(in Chinese)
[6] 王文全,张立翔,闫妍,等.节能离心泵全流道内部湍流的动态大涡模拟[J].流体机械,2008,36(1):14-18.
Wang Wenquan, Zhang Lixiang, Yan Yan, et al. Dynamic large eddy simulation of turbulent flow in an energy saved centrifugal pump[J]. Fluid Machinery, 2008,36(1):14-18. (in Chinese)
[7] 杨敏官,李辉,刘栋,等.液下泵内三维湍流流动的数值模拟[J].机械工程学报,2008,44(3):160-165.
Yang Minguan, Li Hui, Liu Dong, et al. Numerical simulation of 3D turbulent flow in underwater pump[J]. Journal of Mechanical Engineering, 2008,44(3):160-165. (in Chinese)
[8] Plutecki J, Skrzypacz J. CFD simulations of 3D flow in a pump stator with a spherical surface[J]. World Pumps, 2003(443):28-31.
[9] 宫恩祥,周生贵,肖霞平,等.基于CFD的反渗透海水淡化高压泵的性能预测[J].排灌机械,2009,27(2):100-104.
Gong Enxiang, Zhou Shenggui, Xiao Xiaping, et al. Performance predictions of high pressure pump for 10 000 tons reverse osmosis desalination system based on CFD[J].Drainage and Irrigation Machinery, 2009,27(2):100-104. (in Chinese) 
[1] 袁寿其, 叶丽婷, 张金凤, 袁野, 张伟捷. 分流叶片对离心泵内部非定常流动特性的影响[J]. 排灌机械工程学报, 2012, 30(4): 373-.
[2] 董亮, 刘厚林, 谈明高, 王凯, 王勇. 离心泵全流场与非全流场数值计算[J]. 排灌机械工程学报, 2012, 30(3): 274-278.
[3] 李树勋1,2, 徐登伟1, 李确1, 王朝富1. 倒吊桶先导式蒸汽疏水阀的设计与数值模拟[J]. 排灌机械工程学报, 2012, 30(3): 346-350.
[4] 崔宝玲1, 黄达钢1, 史佩琦1, 金庆明2. 叶顶间隙对低比转数半开式离心泵性能的影响[J]. 排灌机械工程学报, 2012, 30(3): 283-288.
[5] 程效锐, 李仁年, 黎义斌, 范赢, 申立新. 螺旋离心泵叶片变螺距型线方程[J]. 排灌机械工程学报, 2012, 30(3): 289-294.
[6] 邴浩, 曹树良, 谭磊, 陆力. 混流泵导叶对其性能的影响[J]. 排灌机械工程学报, 2012, 30(2): 125-130.
[7] 常书平, 王永生. 基于CFD的混流泵空化特性研究[J]. 排灌机械工程学报, 2012, 30(2): 171-175.
[8] 袁建平, 金荣, 陈红亮, 付燕霞, 孙威. 离心泵用赫姆霍兹水消声器声学特性数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 141-146.
[9] 何秀华, 李富, 毕雨时, 邓志丹, 王健. 单振子双腔体V形管无阀压电泵的流场分析[J]. 排灌机械工程学报, 2012, 30(2): 153-156.
[10] 张德胜, 施卫东, 王川, 王国涛, 邹萍萍. 斜流泵叶轮和导叶叶片数对压力脉动的影响[J]. 排灌机械工程学报, 2012, 30(2): 167-170.
[11] 杨敏官, 尹必行, 康灿, 孙鑫恺, 车占富. 绕水翼非定常空化流场数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 192-197.
[12] 汤跃, 汤玲迪, 刘二会. 闸阀调节过程的三维模拟及其动态模型[J]. 排灌机械工程学报, 2012, 30(2): 219-224.
[13] 张仁田, 李慈祥, 姚林碧, 朱红耕. 变频调速灯泡贯流泵站的起动过渡过程[J]. 排灌机械工程学报, 2012, 30(1): 46-52.
[14] 宋宇, 曹树良. 考虑不可凝结气体的空化流模型及数值模拟[J]. 排灌机械工程学报, 2012, 30(1): 1-5.
[15] 田飞, 施卫东, 卢熙宁, 陈斌, 欧鸣雄. 三叶片潜水搅拌机的数值模拟[J]. 排灌机械工程学报, 2012, 30(1): 11-14.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved