排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (2): 118-123    DOI: 10.3969/j.issn.1674-8530.16.0175
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
轴流泵马鞍区水力性能与压力脉动测试与分析
何乃昌1, 谈明高1*, 刘厚林1, 黄鑫2, 吴贤芳3
1.江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013; 2.苏尔寿污水处理设备(上海)有限公司, 上海 200122; 3.江苏大学能源与动力工程学院, 江苏 镇江 212013
Test and analysis on pressure pulsation and hydraulic performance of saddle zone in axial flow pump
HE Naichang1, TAN Minggao1*, LIU Houlin1, HUANG Xin2, WU Xianfang3
1.National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.Sulzer Sewage Treatment Equipment(Shanghai)Co. Ltd., Shanghai, 200122, China; 3.School of Energy & Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (3544 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了分析轴流泵在马鞍区工况的运行特性,对一轴流泵不同工况下的外特性和压力脉动进行了测试,重点分析了轴流泵马鞍区水力特性和压力脉动特性.试验结果表明:模型泵H-Q曲线在0.50Qd~0.60Qd内表现出明显的马鞍形,且扬程在马鞍区内0.55Qd工况时达到最小值,较0.60Qd工况扬程降低0.33 m,为设计工况下扬程的5.5%;叶轮进口和泵出口处压力脉动具有较为明显的周期性,单个周期内压力脉动表现出明显的4波峰4波谷特征;0.55Qd工况时,叶轮进口处压力脉动峰峰值为设计工况的2.3倍;各工况下导叶中间和出口处压力脉动规律较为复杂;叶轮进口压力脉动主频为叶片通过频率,0.55Qd工况叶频处的幅值最大,高于设计工况27.6%.小流量工况下,导叶中间、导叶出口处压力脉动在频域内出现较多低频信号,压力脉动频率成分较复杂.泵出口压力脉动主频在1.00Qd工况下明显表现为叶频.研究成果可为轴流泵不稳定运行特性的优化提供参考.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
何乃昌
谈明高*
刘厚林
黄鑫
吴贤芳
关键词轴流泵   马鞍区   水力特性   压力脉动     
Abstract: In order to analyze the running characteristics of axial flow pump in saddle zone, the pressure pulsation and hydraulic performance of saddle zone in an axial flow pump were tested under diffe-rent conditions. The pressure pulsation and hydraulic performance of saddle zone in the axial flow pump were analyzed. The results show that the H-Q curve of the model pump has an obvious saddle zone under small flow rate conditions in the axial flow pump. Saddle zone is in the flow rate range of 0.50Qd-0.60Qd. There is a minimum head at 0.55Qd which is lower than the head at 0.60Qd by 0.33 m. And the difference is 5.5% of design head. The pressure pulsation at the impeller inlet and pump outlet has an obvious time domain periodicity which reflects the four wave crest and trough behavior in one period. The peak-to-peak value of pressure pulsation at the impeller inlet at 0.55Qd is 2.3 times the value under design condition. The pressure pulsation regularity of guide vane middle and outlet is complex. The main frequency at the impeller inlet is the blade passing frequency. The maximum pressure pulsation amplitude is located at the blade passing frequency of 0.55Qd,which is 27.6% higher than the maximum amplitude of the pressure pulsation at design condition. There appear many low-frequency signals at guide vanes middle and outlet under small flow rate conditions and the pressure pulsation is complicated. The main frequency at the pump outlet shows a blade passing frequency at design condition. The research results can provide a reference for the optimization of unstable running characteristics in the axial flow pump.
Key wordsaxial flow pump   saddle zone   hydraulic performance   pressure pulsation   
收稿日期: 2016-05-06;
基金资助:

江苏省产学研项目(BY2014123-07);江苏省成果转化项目(BA2013127);江苏高校优势学科建设工程资助项目;江苏大学研究生创新工程项目(KYXX_0039)

引用本文:   
何乃昌,谈明高*,刘厚林等. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
HE Nai-Chang-,TAN Ming-Gao-*,LIU Hou-Lin- et al. Test and analysis on pressure pulsation and hydraulic performance of saddle zone in axial flow pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(2): 118-123.
 
[1] 关醒凡. 轴流泵与斜流泵[M]. 北京:中国宇航出版社,2009.
[2] 罗欣,郑源,张新. 轴流泵马鞍区流场流固耦合数值模拟[J]. 江苏大学学报(自然科学版),2014,32(6):466-471.
LUO Xin,ZHENG Yuan,ZHANG Xin. Numerical simulation of flow-solid coupling of saddle zone in axial flow pump saddle[J]. Journal of Jiangsu University(natural science edition),2014,32(6):466-471.(in Chinese)
[3] 耿卫明,刘超,汤方平. 轴流泵叶轮出口流场的3D-PIV测量[J]. 河海大学学报(自然科学版),2010,38(5):516-521.
GENG Weiming,LIU Chao,TANG Fangping. 3D-PIV measuring of axial flow pump impeller outlet flow field[J]. Journal of Hohai University(natural science),2010,38(5):516-521.(in Chinese)
[4] ZHU H,ZHANG R,XI B,et al. Internal flow mechanism of axial-flow pump with adjustable guide vanes[C]//Proceedings of ASME 2013 Fluids Engineering Division Summer Meeting, New York: ASME, 2013:V01AT03 A026.
[5] 郑源,茅媛婷,周大庆,等. 低扬程大流量泵装置马鞍区的流动特性[J]. 排灌机械工程学报,2011,29(5):369-373. 浏览
ZHENG Yuan,MAO Yuanting,ZHOU Daqing,et al. Flow characteristics of saddle zone in low-head H and large flow pump[J]. Journal of drainage & irrigation machinery engineering,2011,29(5):369-373.(in Chinese)
[6] KANG C,YU X,GONG W,et al. Influence of stator vane number on performance of the axial-flow pump[J]. Journal of mechanical science & technology,2015,29(5):2025-2034.
[7] ZHANG D S,SHI W D,CHEN B,et al. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of hydrodynamics,2010,22(1):35-43.
[8] 姚捷,施卫东,吴苏青,等. 轴流泵压力脉动数值计算与试验[J]. 农业机械学报,2013,44(S1):119-124.
YAO Jie,SHI Weidong,WU Suqing,et al. Numerical calculation and experiment of pressure pulsation in axial flow pump[J]. Transaction of the CSAM,2013,44(S1):119-124.(in Chinese)
[9] FENG J,LUO X,GUO P,et al. Influence of tip clea-rance on pressure fluctuations in an axial flow pump[J]. Journal of mechanical science & technology,2016,30(4):1603-1610.
[10] EISEMANN R C. Machinery malfunction diagnosis and correction: Vibration analysis and troubleshooting for process industries [M]. London: Prentice Hall PTR, 1998.
[1] 韩伟,, 李雪峰,*, 苏敏, 李仁年,, 陈昊,. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
[2] 高波1, 杜文强1, 杨丽1, 张宁1, 王浩宇1, 袁霄2. 蜗壳面积变化规律对低比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(9): 749-.
[3] 季磊磊, 李伟, 施卫东, 邵佩佩, 蒋小平. 叶片数对混流泵内部非定常压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(8): 666-.
[4] 陆荣,袁建平,李彦军,蒋红樱. 基于神经网络模型和CFD的轴流泵自动优化[J]. 排灌机械工程学报, 2017, 35(6): 481-487.
[5] 张琳, 施卫东, 张德胜, 石磊. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.
[6] 韩冬冬, 于凤荣, 张思青. 水泵水轮机水轮机工况全流道三维非定常数值模拟[J]. 排灌机械工程学报, 2017, 35(4): 325-332.
[7] 顾延东, 袁寿其, 裴吉, 刘永, 曹健. 导叶安装位置对混流泵压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 93-99.
[8] 刘志超, 孔繁余, 王洋, 谢山峰, 赵立峰. 非等距叶片分布对旋涡自吸泵压力脉动的影响[J]. 排灌机械工程学报, 2017, 35(2): 113-118.
[9] 陈宇杰, 郑源, 阚阚, 张海胜, 徐建叶, 陈鹏, 陈荣杰. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017, 35(2): 126-132.
[10] 李仁年,, 陈昊, 韩伟,, 李雪峰, 刘慧娟. 颗粒粒径对导叶式离心泵动静叶栅内流动的影响[J]. 排灌机械工程学报, 2017, 35(12): 1018-1023.
[11] 谈明高, 廉益超, 吴贤芳, 丁荣, 陈昆. 双流道泵内瞬态动力学特性[J]. 排灌机械工程学报, 2017, 35(12): 1024-1029.
[12] 史广泰, 刘小兵, 魏文景, 刘洋. 含导叶的液力透平内部压力脉动特性[J]. 排灌机械工程学报, 2017, 35(1): 6-12.
[13] 张霞, 袁寿其, 张金凤, 黄茜. 螺旋形蜗壳型式对高比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(1): 25-31.
[14] 黄茜, 袁寿其, 张金凤, 张霞. 叶片包角对高比转数离心泵性能的影响[J]. 排灌机械工程学报, 2016, 34(9): 742-747.
[15] 王丽慧, 施伟, 沈昌荣, 徐磊. 立式轴流泵装置模型水力性能数值分析及预测[J]. 排灌机械工程学报, 2016, 34(9): 776-782.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved