排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2018, Vol. 36 Issue (2): 99-103    DOI: 10.3969/j.issn.1674-8530.16.0215
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
透平工况动静叶栅内固液两相流动压力脉动特性
韩伟1,2, 李雪峰1,2*, 苏敏3, 李仁年1,2, 陈昊1,2
1.兰州理工大学能源与动力学院, 甘肃 兰州 730050; 2.甘肃省流体机械及系统重点实验室, 甘肃 兰州 730050; 3.兰州理工大学电气工程与信息工程学院, 甘肃 兰州 730050
Pressure fluctuation of solid-liquid flow in stator and rotor cascades of pump as turbine
HAN Wei1,2, LI Xuefeng1,2*, SU Min3, LI Rennian1,2, CHEN Hao1,2
1.School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2.Gansu Key Laboratory of Fluid Machinery and System, Lanzhou, Gansu 730050, China; 3.College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
 全文: PDF (6703 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究泵作透平过流含沙水时动静叶栅内非定常流动所引起的压力脉动特性情况,以径向导叶式离心泵反转作液力透平为研究对象,对全流道进行结构化六面体网格划分,采用大涡模拟(large eddy simulation, LES)与Mixture多相流模型相结合的方法进行了三维非定常数值计算.分别对清水介质和固液两相介质3个流量工况下的压力脉动进行了监测.结果表明:清水介质和固液两相介质下,动静叶栅交界面处监测点P3和导叶内监测点P6由于受到叶轮内压力梯度的交替变化影响,时域脉动周期性明显,且与叶片通过周期一致.小流量工况下,颗粒的存在减少了尾水管回流,使得压力脉动较清水介质更稳定,大流量工况下,颗粒的存在加剧流场紊乱.压力脉动频域分布结果显示,不同工况的主频均为叶片通过频率,谐频为叶频的倍数,其幅值呈指数形式衰减.在小流量工况下,叶轮内部涡流诱导了明显的二次谐波,流体介质中的颗粒使得此处的高频压力脉动得到了增强.大流量工况下,流体介质中的颗粒使得此处的高频压力脉动得到了削弱.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩伟
李雪峰
*
苏敏
李仁年
陈昊
关键词泵作透平   动静叶栅   固液两相   压力脉动     
Abstract: In order to study the pressure fluctuation characteristics of solid-liquid flow in stator and rotor cascades of pump as turbine, the centrifugal pump with space diffuser as turbine is chosen, and then the unsteady 3D flow field was simulated based on the large-eddy simulation(LES)and Mixture multiphase flow model with structured hexahedral mesh generated in ICEM. The pressure fluctuations under three different flow in water and solid-liquid two-phase were monitored in the numerical calculation. The results showed that the point P3 between the stator and the rotor and the point P6 in the guide vane are due to the pressure gradient alternating change in the impeller under the water and solid-liquid two-phase, the periodicity of the pressure fluctuations in time domain is obvious, and consis-tent with the blade passing period. The presence of particles reduces the backflow of the draft tube, which makes the pressure fluctuation more stable at the small flow rate, and the existence of particles increases the flow field disturbance at the large flow rate. The results of the pressure fluctuations in frequency domain reveal that the main frequency are of the blade passing frequency(BPF)and the harmonic frequency is a multiple of the blade passing frequency at different conditions, and its amplitude shows exponential decay. The vortex induces second-harmonic in the impeller obviously. The particles enhance the high-frequency pressure fluctuation at the small flow rate while those weaken it at the large flow rate.
Key wordspump as turbine   stator and rotor cascade   solid-liquid flow   pressure fluctuation   
收稿日期: 2016-09-12;
基金资助:

国家自然科学基金资助项目(51579125);兰州理工大学电气工程与信息工程学院实验室开放基金项目

引用本文:   
韩伟,,李雪峰等. 透平工况动静叶栅内固液两相流动压力脉动特性[J]. 排灌机械工程学报, 2018, 36(2): 99-103.
HAN Wei-,,LI Xue-Feng- et al. Pressure fluctuation of solid-liquid flow in stator and rotor cascades of pump as turbine[J]. Journal of Drainage and Irrigation Machinery Engin, 2018, 36(2): 99-103.
 
[1] 朱荣生, 龙云, 付强,等. 核主泵小流量工况压力脉动特性[J]. 振动与冲击, 2014, 33(17):143-149.
ZHU Rongsheng,LONG Yun,FU Qiang,et al. Pressure pulsation of a reactor coolant pump under low flow conditions[J].Journal of vibration and shock,2014,33(17):143-149.(in Chinese)
[2] 杨孙圣, 孔繁余, 成军,等. 液力透平蜗壳内非定常压力脉动的研究[J]. 工程力学, 2013,30(2):388-393.
YANG Sunsheng,KONG Fanyu,CHENG Jun,et al. Reseach on unsteady pressure field within a hydraulic turbine volute[J].Engineering mechanics,2013,30(2):388-393.(in Chinese)
[3] YANG Sunsheng, KONG Fangyu, QU Xiaoyu, et al. Influence of blade number on the performance and pressure pulsations in a pump used as a turbine[J]. Journal of fluids engineering, 2012, 134(12):67-75.
[4] 杨孙圣. 离心泵作透平的理论分析数值计算与实验研究[D]. 镇江:江苏大学, 2012.
[5] 史广泰, 杨军虎, 苗森春,等. 不同进口截面下液力透平非定常压力脉动计算[J]. 航空动力学报, 2016, 31(3):659-668.
SHI Guangtai, YANG Junhu, MIAO Senchun, et al. Unsteady calculation of pressure pulsations within hydraulic turbine under different entrance sections [J]. Journal of aerospace power, 2016, 31(3):659-668.(in Chinese)
[6] 史广泰, 杨军虎, 苗森春,等. 不同导叶数下液力透平蜗壳内压力脉动计算[J]. 航空动力学报, 2015, 30(5):1228-1235.
SHI Guangtai., YANG Junhu., MIAO Senchun. et al. Calculation of pressure fluctuation within volute of hydraulic turbine under different guide vane numbers [J]. Journal of aerospace power, 2015, 30(5):1228-1235.(in Chinese)
[7] 夏勇,王春林,杨晓勇,等. 双吸泵作液力透平内部流动诱导噪声数值分析[J]. 排灌机械工程学报, 2016, 34(6):483-489. 浏览
[8]   
[9] XIA Yong, WANG Chunlin, YANG Xiaoyong, et al. [J]. Journal of drainage & irrigation machinery engineering, 2016, 34(6):483-489.(in Chinese)
[10] 代翠,董亮,孔繁余,等. 泵作透平振动噪声机理分析与试验[J]. 农业工程学报, 2014,30(15):114-119.
DAI Cui, DONG Liang, KONG Fangyu,, et al. Mechanism analysis of vibration and noise for centrifugal pump working as turbine[J]. Transactions of the CSAE, 2014, 30(15):114-119.(in Chinese)
[11] 夏书强. 气液两相介质下液力透平基本方程和换算关系曲线的研究[D]. 兰州:兰州理工大学, 2013.
[12] 黄思, 陈宇, 宿向辉. 离心泵作水力透平起动过程的非定常流场模拟计算[J]. 水泵技术, 2015(5):25-30.
[13] HUANG Si, CHEN Yu, SU Xianghui. Unsteady flow field simulation of centrifugal pump for starting process of hydraulic turbine [J]. Pump technology, 2015(5):25-30.(in Chinese)
[14] XIAO Huahua, MAO Zhanli, AN Weiguang, et al. Experimental and LES investigation of flame propagation in a hydrogen/air mixture in a combustion vessel[J]. Chinese science bulletin,2014(20):2496-2504.
[15] MAJIDI K. Numberical study of unsteady flow in a centrifugal pump [J]. Journal of turbomachinery, 2005, 127(2):363-371.
[1] 赵伟国,, 郑英杰,, 刘宜,, 韩向东,. 沙粒体积分数对离心泵磨损特性影响的数值分析[J]. 排灌机械工程学报, 2018, 36(2): 93-98.
[2] 何乃昌, 谈明高*, 刘厚林, 黄鑫, 吴贤芳. 轴流泵马鞍区水力性能与压力脉动测试与分析[J]. 排灌机械工程学报, 2018, 36(2): 118-123.
[3] 高波1, 杜文强1, 杨丽1, 张宁1, 王浩宇1, 袁霄2. 蜗壳面积变化规律对低比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(9): 749-.
[4] 曹卫东, 张忆宁, 姚凌钧. 多级离心泵内部固液两相流动及磨损特性[J]. 排灌机械工程学报, 2017, 35(8): 652-.
[5] 季磊磊, 李伟, 施卫东, 邵佩佩, 蒋小平. 叶片数对混流泵内部非定常压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(8): 666-.
[6] 张琳, 施卫东, 张德胜, 石磊. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.
[7] 韩冬冬, 于凤荣, 张思青. 水泵水轮机水轮机工况全流道三维非定常数值模拟[J]. 排灌机械工程学报, 2017, 35(4): 325-332.
[8] 顾延东, 袁寿其, 裴吉, 刘永, 曹健. 导叶安装位置对混流泵压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 93-99.
[9] 刘志超, 孔繁余, 王洋, 谢山峰, 赵立峰. 非等距叶片分布对旋涡自吸泵压力脉动的影响[J]. 排灌机械工程学报, 2017, 35(2): 113-118.
[10] 李仁年,, 陈昊, 韩伟,, 李雪峰, 刘慧娟. 颗粒粒径对导叶式离心泵动静叶栅内流动的影响[J]. 排灌机械工程学报, 2017, 35(12): 1018-1023.
[11] 谈明高, 廉益超, 吴贤芳, 丁荣, 陈昆. 双流道泵内瞬态动力学特性[J]. 排灌机械工程学报, 2017, 35(12): 1024-1029.
[12] 史广泰, 刘小兵, 魏文景, 刘洋. 含导叶的液力透平内部压力脉动特性[J]. 排灌机械工程学报, 2017, 35(1): 6-12.
[13] 张霞, 袁寿其, 张金凤, 黄茜. 螺旋形蜗壳型式对高比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(1): 25-31.
[14] 黄茜, 袁寿其, 张金凤, 张霞. 叶片包角对高比转数离心泵性能的影响[J]. 排灌机械工程学报, 2016, 34(9): 742-747.
[15] 柴立平, 叶欢, 任志明, 李辉. 叶轮参数对泵出口压力脉动的影响[J]. 排灌机械工程学报, 2016, 34(8): 645-650.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved