排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2017, Vol. 35 Issue (11): 933-940    DOI: 10.3969/j.issn.1674-8530.16.0157
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
非定常空化流致噪声数值模拟研究
朱明明, 黄彪, 王国玉, 王宁
北京理工大学机械与车辆学院, 北京 100081
Numerical investigation on noise induced by unsteady cavitating flow over hydrofoil
ZHU Mingming, HUANG Biao, WANG Guoyu, WANG Ning
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
 全文: PDF (2632 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 采用计算流体力学与声学边界元法相结合对绕水翼非定常空化流动的负载噪声进行计算,同时基于球空泡理论的脉动体积法预测了空泡噪声.研究结果表明:无空化发生时,负载噪声以低频线谱特性为主,声波基频与尾涡脱落频率基本一致,线谱峰值发生于低阶谐频处;空化发生时,相比于负载噪声的线谱成分,连续谱增强较为显著,且负载噪声的总声压级相比无空化时有所增大,并且空泡噪声成为最主要噪声源,辐射噪声频谱呈宽谱特性;空泡噪声功率谱密度的第一和第二个峰值频率分别与空化脱落频率和尾涡脱落频率相对应,而空泡噪声的声能量密度集中在相对较高的频带范围内,这可能是由于云状空化阶段空穴尾部伴随着多尺度的空化泡生长脱落行为所致.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱明明
黄彪
王国玉
王宁
关键词水翼   非定常空化流动   空泡噪声   负载噪声   数值模拟     
Abstract: The loading noise of unsteady cavitating flow around a hydrofoil is calculated by combining CFD and acoustic boundary element method, meanwhile, the corresponding cavitation noise is predicted by bubble volume pulse method in spherical cavitation bubble theory. The results indicate that noncavitation loading noise is mainly subject to a linear spectrum at low frequency. Moreover, the acoustic fundamental frequency is basically the same as the vortex shedding frequency, and the spectrum peaks are at its loworder harmonics. However, when cavitation occurs, the continuous spectrum is significantly enhanced compared with the linear composition, and the overall acoustic pressure level of loading noise is increased compared with that of noncavitation. In addition, the bubble noise becomes the main noise source with a broad spectrum. The first and second peak frequencies of the acoustic power spectrum density are consistent with the cloud cavitation and trailing vortex shedding frequencies, respectively. Nevertheless, the acoustic power density of bubble noise is concentrated in the higher frequency bands, which may be resulted from the growth and shedding behavior of multiscale bubbles behind the tail of cavity.
Key wordshydrofoil;unsteady   cavitating flow   bubble noise   loading noise   numerical simulation   
收稿日期: 2016-07-04;
通讯作者: 朱明明(1986—),男,安徽淮北人,硕士研究生(zhumingming6@163.com),主要从事流体机械空化噪声研究.   
作者简介: 黄彪(1985—),男,湖北武汉人,副教授(huangbiao@bit.edu.cn),主要从事水力机械内部空化流动研究.
引用本文:   
朱明明,黄彪,王国玉等. 非定常空化流致噪声数值模拟研究[J]. 排灌机械工程学报, 2017, 35(11): 933-940.
ZHU Ming-Ming,HUANG Biao,WANG Guo-Yu et al. Numerical investigation on noise induced by unsteady cavitating flow over hydrofoil[J]. Journal of Drainage and Irrigation Machinery Engin, 2017, 35(11): 933-940.
 
[1] 刘竹青, 陈奕宏, 熊紫英, 等. 螺旋桨空化噪声时域和频域特征研究[C]//第十四届船舶水下噪声学术讨论会论文集,2013.
[2] SEOL H, SUH J C, LEE S. Development of hybrid method for the prediction of underwater propeller noise[J]. Journal of sound and vibration, 2005, 288(1): 345-360.
[3] SEOL H, JUNG B, SUH J C, et al. Prediction of noncavitating underwater propeller noise[J]. Journal of sound and vibration, 2002, 257(1): 131-156.
[4] 孙红星, 朱锡清. 螺旋桨离散谱噪声计算研究[J]. 船舶力学, 2003(4):105-109.
[5] SUN Hongxing, ZHU Xiqing. Study on discrete noise induced by marine propeller[J]. Journal of ship mechanics, 2003(4):105-109. (in Chinese) [6]高霄鹏, 杨国桢. 水面舰船流噪声基本声场的数值研究[J]. 海军工程大学学报, 2013, 25(1): 74-78.
GAO Xiaopeng,YANG Guozhen. Numerical research on fluid noise of surface ship[J].Journal of Naval University of Engineering, 2013,25(1):74-78. (in Chinese) [7]张漫. 螺旋桨无空泡噪声的数值预报研究[D]. 大连:大连理工大学, 2013.
[6] 黄景泉. 空泡超始和溃灭阶段的噪声[J]. 应用数学和力学, 1990(8):725-730.
[7] HUANG Jingquan. Noise at inception and collapse of a cavity[J]. Applied mathematics and mechanics, 1990(8): 725-730. (in Chinese) [9]戚定满, 鲁传敬. 单空泡演化及辐射噪声[J]. 上海交通大学学报, 1998,32 (12):50-54.
QI Dingman, LU Chuanjing. Growth and collapse of single bubble and its noise[J]. Journal of Shanghai Jiaotong University, 1998,32 (12):50-54. (in Chinese) [10]蒲中奇, 张伟, 施克仁, 等. 双空泡溃灭及空化噪声的建模[J]. 清华大学学报(自然科学版), 2005, 45(11): 1450-1452.
[8] PU Zhongqi, ZHANG Wei, SHI Keren,et al. Noise generation during the simultaneous collapse of two bubbles[J]. Journal of Tsinghua University (science & technology), 2005,45(11):1450-1452. (in Chinese) [11]胡健. 螺旋桨空泡性能及低噪声螺旋桨设计研究[D].哈尔滨:哈尔滨工程大学, 2006.
[9]   [12]王国栋. 螺旋桨水动力、空泡和噪声性能预报方法研究[D]. 武汉:华中科技大学, 2013.
[10]   [13]朱志峰. 基于N-S方程的舰船螺旋桨空泡噪声特征研究[D]. 南京:东南大学, 2011.
[11] 杨琼方, 王永生, 张明敏. 不均匀伴流场中螺旋桨空化的黏性流数值模拟和低频噪声预测[J]. 声学学报, 2012,37 (6):583-594.
YANG Qiongfang, WANG Yongsheng, ZHANG Mingmin. Propeller cavitation viscous simulation and lowfrequency noise prediction with nonuniform inflow[J]. Acta acustica, 2012,37(6):583-594. (in Chinese) [15]况贶, 张永坤. 时域螺旋桨空泡噪声的球空泡脉动体积方法[J]. 舰船科学技术, 2012, 34(2):22-29.
[12] KUANG Kuang,ZHANG Yongkun. Prediction of propeller cavitation noise using bubble volume pulse method in time domain[J]. Ship science and technology, 2012, 34(2):22-29. (in Chinese) [16]阮辉, 廖伟丽, 黄永, 等. 水翼的空化噪声数值预报 研究[J]. 西安理工大学学报, 2015,31(1):67-71.
[13] RUAN Hui, LIAO Weili, HHUANG Yong, et al. Research on cavitation noise numerical prediction of hydrofoil[J]. Journal of Xi′an University of Technology, 2015,31(1):67-71. (in Chinese) [17]HUANG B, ZHAO Y, WANG G. Large eddy simulation of turbulent vortexcavitation interactions in transient sheet/cloud cavitating flows[J]. Computers & fluids, 2014, 92: 113-124.
[14] LIGHTHILL M J. On sound generated aerodynamically [J]. Proc. Roy. Soc.(ser. A), 1952, 211: 564-587.
[15] 赵宇, 王国玉, 黄彪, 等. 非定常空化流动涡旋运动及其流体动力特性[J]. 力学学报, 2014, 46(2):191-200.
ZHAO Yu,WANG Guoyu,HUANG Biao, et al. Study of turbulent vortex and hydraulic dynamics in transient sheet/cloud cavitating flows[J]. Chinese journal of theoretical and applied mechanics, 2014, 46(2): 191-200. (in Chinese) [20]GERRARD J H. Measurements of the sound from circular cylinders in an air stream[J]. Proceedings of the Physical Society(section B), 1995, 68(7): 453.
[16] WANG G Y, SENOCAK I, SHYY W. Dynamics of attached turbulent cavitating flows[J]. Progress in aerospace sciences, 2001, 37(6): 551-581.
BAKIR F, REY R, GERBER A G, et al. Numerical and experimental investigations of the cavitating behavior of an inducer[J]. International journal of rotating machinery, 2001, 37(6):551-581.
[17]   [23]黄彪. 非定常空化流动机理及数值计算模型研究[D]. 北京:北京理工大学, 2013.
[18] BIN J I, LUO X, PENG X, et al. Threedimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil[J]. Journal of hydrodynamics(ser. B), 2013, 25(4): 510-519.
[19]  
[1] 曹卫东, 张忆宁, 姚凌钧. 叶片出口角对离心泵性能的影响及滑移系数修正[J]. 排灌机械工程学报, 2017, 35(9): 755-.
[2] 周鑫, 郑源, 李东阔, 蒋文青. Gurney襟翼对圆弧板翼型气动性能影响的数值模拟[J]. 排灌机械工程学报, 2017, 35(9): 780-784.
[3] 陶洪飞, 戚印鑫, 杨海华, 马英杰,赵经华, 郑文强, 刘亚丽. 河水滴灌重力沉沙过滤池中浑水流场分布规律[J]. 排灌机械工程学报, 2017, 35(9): 785-791.
[4] 李琪飞1, 2, 刘超1, 王源凯1. 部分负荷工况下水泵水轮机的空化特性[J]. 排灌机械工程学报, 2017, 35(8): 680-.
[5] 严彦1, 陈卫2, 孙见君1, 於秋萍1, 马晨波1, 张玉言1, 佘宝秋2. 双向自泵送流体动静压型机械密封性能数值模拟[J]. 排灌机械工程学报, 2017, 35(8): 692-.
[6] 王家斌, 王逸云, 袁寿其, 裴吉. 两级中开泵级间隔板对双吸叶轮径向力的影响[J]. 排灌机械工程学报, 2017, 35(7): 564-570.
[7] 陈瑞华, 杨吉健, 马麟, 胡中科, 高兰兰. 小湾水电站泄洪洞洞身数值模拟研究[J]. 排灌机械工程学报, 2017, 35(6): 488-494.
[8] 陈汇龙, 李同, 赵斌娟, 任坤腾, 王彬. 动压型机械密封内流场及性能的流固热耦合[J]. 排灌机械工程学报, 2017, 35(6): 502-507.
[9] 刘恒, 王文全, 闫妍. 变桨距角下水平轴海流能水轮机水动力特性及结构性能[J]. 排灌机械工程学报, 2017, 35(5): 393-397.
[10] 施卫东, 张铃杰, 周岭, 陆伟刚. 基于DEM的流化床气固两相流瞬态数值模拟与验证[J]. 排灌机械工程学报, 2017, 35(5): 404-409.
[11] 余建平, 罗骁, 付佳, 张希恒, 郑荣部, 陈宗杰. 基于分离转捩模型的轴流式止回阀减阻试验研究[J]. 排灌机械工程学报, 2017, 35(5): 410-416.
[12] 袁丹青, 石荣, 丛小青, 季明. 远射程消防水炮流道内导流片的性能分析[J]. 排灌机械工程学报, 2017, 35(4): 333-339.
[13] 何相慧, 刘厚林, 谈明高, 王凯, 吴贤芳. 叶轮背叶片形状对熔盐泵性能的影响[J]. 排灌机械工程学报, 2017, 35(4): 289-295.
[14] 叶道星, 李红, 张翔. 中浓纸浆泵内部气液分离数值模拟与试验[J]. 排灌机械工程学报, 2017, 35(4): 309-318.
[15] 张永学, 侯虎灿, 徐畅, 何文萱, 李振林. 熵产方法在离心泵能耗评价中的应用[J]. 排灌机械工程学报, 2017, 35(4): 277-282.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved