排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2017, Vol. 35 Issue (5): 404-409    DOI: 10.3969/j.issn.1674-8530.16.0077
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于DEM的流化床气固两相流瞬态数值模拟与验证
施卫东, 张铃杰, 周岭, 陆伟刚
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
DEM-based numerical simulation of unsteady gas-solid two phase flow in a fluidized bed and experimental validation
SHI Weidong, ZHANG Lingjie, ZHOU Ling, LU Weigang
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1668 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了突破均相流模型不能全面考虑颗粒碰撞过程中受力的瓶颈,采用基于欧拉-拉格朗日方法的DEM离散元模拟方法,对准三维鼓泡流化床起始阶段的气固两相运动进行了瞬态数值模拟.并结合流化床起始过程的高速摄影试验结果,从床层高度、空泡大小的变化以及颗粒相运动特性等角度对比分析了试验结果和数值计算结果.发现在流化床鼓泡的初始阶段,DEM模型的预测结果和试验结果吻合较好,床层高度和空泡形态基本一致;在流化床内由于高速气流和颗粒相互作用产生的空泡临近破碎的阶段,DEM预测的空泡直径和床层高度均小于试验测量结果.但是从整体流体动形态以及颗粒运动轨迹等角度来看,DEM模型能够较为准确地对稠密两相流进行求解,同时也能较好地描述气固流化床内的动力学特性,研究结果对工程实际具有重要的指导意义.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
施卫东
张铃杰
周岭
陆伟刚
关键词流化床   离散元法模型   气固两相流   多相交互作用   数值模拟   试验研究     
Abstract: In this study, the Euler-Lagrange method based DEM(discrete element method)is used to simulate the unsteady gas-solid two phase flow in the initial stage of three-dimensional bubbling fluidized bed to break the bottle-neck in the Euler-Euler model in which the force of particle collisions is not taken into account. Based on experimental observations made by high speed photographic technique in the initial stage of flow in the fluidized bed, a comparison is conducted between experiment and simulation in terms of changes in bed height, bubble size and particle phase motion characteristics. In the initial stage, the predicted results are in good agreement with the experimental data, particularly, the predicted height of bed and the shape of bubbles are basically the same as the measurements. Unfortunately, at a time moment near the bubble breakup, the predicted bubble diameter and height of bed are smaller than the experimental measurements. However, from the point of view of both fluid flow pattern and particle motion trajectory, DEM can solve the dense two-phase flow accurately, but also can describe the dynamic characteristics of a gas solid fluidized bed. The results presented in this study have important significance in guiding engineering practice. 
Key wordsfluidized bed   DEM model   gas-solid two phase flow   multiphase interaction   numerical simulation   experimental study   
收稿日期: 2016-04-11;
基金资助:中国博士后科学基金资助项目(2015M581737);江苏省自然科学基金青年基金资助项目(BK20150508)
通讯作者: 张铃杰(1992—),男,江苏南通人,硕士研究生(zlj498@126.com),主要从事气固两相流研究.   
作者简介: 施卫东(1964—),男,江苏南通人,研究员,博士生导师(wdshi@ujs.edu.cn),主要从事流体机械及工程研究.
引用本文:   
施卫东,张铃杰,周岭等. 基于DEM的流化床气固两相流瞬态数值模拟与验证[J]. 排灌机械工程学报, 2017, 35(5): 404-409.
SHI Wei-Dong,ZHANG Ling-Jie,ZHOU Ling et al. DEM-based numerical simulation of unsteady gas-solid two phase flow in a fluidized bed and experimental validation[J]. Journal of Drainage and Irrigation Machinery Engin, 2017, 35(5): 404-409.
 
[1] 金涌.流态化工程原理[M].北京:清华大学出版社,2002:360-362.
[2] 祝京旭, 洪江. 喷动床发展与现状[J]. 化学反应工程与工艺,1997,13(2):207-230.
ZHU Jingxu,HONG Jiang. Development and present situation of the jet bed[J]. Chemical reaction engineering and technology,1997,13(2):207-230.(in Chinese)
[3] 桂南.复杂两相流动中颗粒碰撞的DEM-LES/DNS耦合模拟研究[D].杭州:浙江大学, 2010.
[4] ZHOU Yong. Geometric Collision Rate of Inertial Particles in Fully-Developed Turbulence[D]. Newark:University of Delaware,1999.
[5] WIGHTMAN C, MOAKHER M, MUZZIO F J, et al. Simulation of flow and mixing of particles in a rotating and rocking cylinder[J]. AICHE journal, 1998, 44(6):1266-1276.
[6] MISHRA B K, RAJAMANI R K. Simulation of charge motion in ball mills. part 1: experimental verifications[J]. International journal of mineral processing, 1994, 40(3/4):171-186.
[7] HELLAND E, BOURNOT H, OCCELLI R, et al. Drag reduction and cluster formation in a circulating fluidised bed[J]. Chemical engineering science, 2007, 62(1/2):148-158.
[8] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder technology, 1993, 77(1):79-87.
[9] DIETIKER J F, LI T, GARG R, et al. Cartesian grid simulations of gas-solids flow systems with complex geometry[J]. Powder technology, 2013, 235(2):696-705.
[10] 郭婷婷, 徐忠, 李少华,等. 气垫防磨叶栅内固体颗粒的运动特性[J]. 流体机械, 2001, 29(9):15-17.
GUO Tingting,XU Zhong,LI Shaohua,et al. Numerical simulations of the air-solid two-phase-flow in the air-cushion anti-erosion cascades[J]. Fluid machinery, 2001, 29(9):15-17.(in Chinese)
[11] STROH A, ALOBAID F, HASENZAHL M T, et al. Comparison of three different CFD methods for dense fluidized beds and validation by a cold flow experiment[J]. Particuology, 2016, 29:34-47.
[12] ZHUANG Y Q, CHEN X M, LUO Z H, et al. CFD-DEM modeling of gas-solid flow and catalytic MTO reaction in a fluidized bed reactor[J]. Computers & chemical engineering, 2014, 60:1-16.
[13] ZHANG Z, LING Z, AGARWAL R. Transient simulations of spouted fluidized bed for coal-direct chemical looping combustion[J]. Energy & fuels, 2014, 28(2):1548-1560.
[14] ESMAILI E, MAHINPEY N. Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas-solid bubbling fluidized bed[J]. Advances in engineering software, 2011, 42(6):375-386.
[15] 雷蕾, 袁隆基. 循环流化床锅炉旋风分离器性能特性数值模拟[J]. 江苏大学学报(自然科学版), 2015, 36(2):148-152.
LEI Lei,YUAN Longji. Numerical simulation on cyclone separator characteristics of circulating fluidized bed boiler[J]. Journal of Jiangsu University(natural science edition), 2015, 36(2):148-152.(in Chinese)
[16] Almohammed N, Alobaid F, Breuer M, et al. A comparative study on the influence of the gas flow rate on the hydrodynamics of a gas-solid spouted fluidized bed using Euler-Euler and Euler-Lagrange/DEM models[J]. Powder technology, 2014, 264(3):343-364.
[17] ALOBAID F. 3D Modelling and Simulation of Reactive Fluidized Beds for Conversion of Biomass With Discrete Element Method [D]. Darmstadt:Technische Universität Darmstadt,2013.
[18] 吴迎亚, 彭丽, 蓝兴英,等. 静电效应对有无埋管气固鼓泡床内气泡特性的影响分析[J]. 化工学报,2016,67(4):1150-1158.
WU Yingya,PENG Li,LAN Xingying,et al. Effect of electrostatic on bubble hydrodynamics in gas-solids bubbling bed with and without immersed horizontal tubes[J]. CIESC journal, 2016, 67(4): 1150-1158.(in Chinese)
[1] 刘恒, 王文全, 闫妍. 变桨距角下水平轴海流能水轮机水动力特性及结构性能[J]. 排灌机械工程学报, 2017, 35(5): 393-397.
[2] 余建平, 罗骁, 付佳, 张希恒, 郑荣部, 陈宗杰. 基于分离转捩模型的轴流式止回阀减阻试验研究[J]. 排灌机械工程学报, 2017, 35(5): 410-416.
[3] 张永学, 侯虎灿, 徐畅, 何文萱, 李振林. 熵产方法在离心泵能耗评价中的应用[J]. 排灌机械工程学报, 2017, 35(4): 277-282.
[4] 王海渠, 李红, 邹晨海. 旋流式射流泵装置性能试验研究[J]. 排灌机械工程学报, 2017, 35(4): 283-288.
[5] 袁丹青, 石荣, 丛小青, 季明. 远射程消防水炮流道内导流片的性能分析[J]. 排灌机械工程学报, 2017, 35(4): 333-339.
[6] 何相慧, 刘厚林, 谈明高, 王凯, 吴贤芳. 叶轮背叶片形状对熔盐泵性能的影响[J]. 排灌机械工程学报, 2017, 35(4): 289-295.
[7] 叶道星, 李红, 张翔. 中浓纸浆泵内部气液分离数值模拟与试验[J]. 排灌机械工程学报, 2017, 35(4): 309-318.
[8] 杨雨, 邱涛. 导板式扇形喷嘴清洗射流流场的数值模拟[J]. 排灌机械工程学报, 2017, 35(3): 243-247.
[9] 陶艺, 袁寿其, 刘建瑞, 张帆, 陶建平. 陶瓷泵半开式叶轮前盖板流线对泵性能的影响[J]. 排灌机械工程学报, 2017, 35(3): 185-191.
[10] 张克玉, 袁建平, 孙文婷, 司乔瑞. 余热排出泵不同启动过程的内部流动特性[J]. 排灌机械工程学报, 2017, 35(3): 192-199.
[11] 史凤霞,, 杨军虎,, 王晓晖,. 液力透平变工况瞬态特性的数值分析[J]. 排灌机械工程学报, 2017, 35(3): 200-206.
[12] 王文全, 李伟忠, 闫妍. 水轮机活动导叶匀速开关过程的三维湍流数值模拟[J]. 排灌机械工程学报, 2017, 35(2): 133-137.
[13] 孙帅辉,, 吴凯, 黄益, 郭鹏程, 罗兴锜. 涡旋式液泵内流场及空化的数值模拟[J]. 排灌机械工程学报, 2017, 35(2): 100-105.
[14] 林刚, 袁建平, 司乔瑞, 周帮伦, 孙威. 叶轮几何参数对离心泵进口回流特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 106-112.
[15] 董亮, 肖佳伟, 明加意, 刘厚林. 液力减速器模型空化特性数值模拟及试验研究[J]. 排灌机械工程学报, 2017, 35(1): 1-5.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved