排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2017, Vol. 35 Issue (4): 303-308    DOI: 10.3969/j.issn.1674-8530.15.0235
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于大涡模拟的混流泵不稳定流动数值研究
张琳, 施卫东, 张德胜, 石磊
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Analysis of instability flow on mixed-flow pump based on LES
ZHANG Lin, SHI Weidong, ZHANG Desheng, SHI Lei
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1935 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了分析某一混流泵在不同工况下运行时的内流场和压力脉动特性,以该混流泵为研究对象,建立流场分析模型,基于CFX软件,采用Large eddy simulation(LES)湍流模型进行不同工况下全流场非定常数值模拟.结果表明:非失速工况下(1.00Qopt),叶轮内流线平稳,没有出现涡团,6个流道内的流态基本一致,仅在导叶出口吸力面附近有一定的流动分离.当旋转失速发生时,在导叶吸力面附近产生了大量的旋涡涡团,从导叶进口到出口,旋涡尺度先增大再减小,涡核附着在压力波动最小的导叶吸力面中间叶高区.对不同点处的压力脉动进行快速傅里叶(FFT)变换,从轮毂到轮缘,压力脉动的幅值逐渐增加.在叶轮出口,压力脉动频率分布情况和叶轮进口类似,但是,低频范围变大,最大脉动频率幅值有所降低,压力脉动主频向低频方向偏移.对不同工况下的压力脉动进行快速FFT变换,3个工况变化规律基本一致,但在0.55Qopt工况下,低频范围较大,频率成分比较复杂,低倍频处的压力脉动幅值比较突出,而在0.75Qopt工况下,低频宽度明显减少,低频脉动的频率集中在1N附近,当达到1.00Qopt工况时,除了6N、12N等主要频率成分外,其他的频率成分均不是特别明显,低频范围的脉动频率幅值显著降低,整体的脉动幅值和另两个工况相比都明显减小.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琳
施卫东
张德胜
石磊
关键词混流泵   压力脉动   傅里叶变换   大涡模拟     
Abstract: A flow-field analysis model of the mixed-flow pump was established in order to study the flow field and pressure pulsation characteristics under different operating conditions. The unsteady numerical simulation of the whole flow field under different operating conditions was carried out by Large eddy simulation(LES)based on the CFX software. The results showed that the flow pattern was consis-tent at six channels except that a certain flow separation appeared on the suction surface near the guide vanes outlet at 1.00Qopt. When the rotating stall occurred, a lot of whirlpool developed near the suction surface of the guide vanes and the whirlpool scale increased first and then decreased from the inlet to the outlet at the guide vanes,more over the vortex core was attached to the suction surface where the pressure fluctuation was smallest. The pressure pulsationat different points was analyzed by FFT transform, which showed that the amplitude of the pressure pulsation increased graduallyfrom the hub to the rim. The distributiom of the pressure pulsation frequency at the outlet was similar to that at the inlet except that the amplitude decreased a little and the dominant frequency shifted to the low-frequency direction.Additionally, the pressure pulsation under different operating conditions was also analyzed. The changing regularity of three operating conditions was consistent.However, the frequency range is larger and the frequency components are more complex at 0.55Qoptcondition than at 0.75Qoptand 1.00Qopt condition. At 0.75 Qopt the low-frequency width is significantly reduced and the frequency of low-frequency pulsation was concentrated around 1N,white at 1.00Qopt,the frequency was not obvious except 6N and 12N, the amplitude of the pulsation frequency in the low-frequency range was significantly reduced, and the integral pulsation amplitude was significantly smaller than that under the other two operating conditions.
Key wordsmixed-flow pump   pressure pulsation   Fourier transform   large eddy simulation   
收稿日期: 2015-10-29;
基金资助:国家自然科学基金资助项目(51579118,51479083);江苏省产学研前瞻性联合研究项目(BY2015064-08)
通讯作者: 施卫东(1964—),男,江苏南通人,研究员,博士生导师(wdshi@ujs.edu.cn),主要从事流体机械设计理论及流动特性研究.   
作者简介: 张琳(1990—),女,江苏南京人,硕士(253929076@qq.com),主要从事流体机械流动特性研究.
引用本文:   
张琳,施卫东,张德胜等. 基于大涡模拟的混流泵不稳定流动数值研究[J]. 排灌机械工程学报, 2017, 35(4): 303-308.
ZHANG Lin,SHI Wei-Dong,ZHANG De-Sheng et al. Analysis of instability flow on mixed-flow pump based on LES[J]. Journal of Drainage and Irrigation Machinery Engin, 2017, 35(4): 303-308.
 
[1] 关醒凡. 轴流泵和斜流泵[M]. 北京:中国宇航出版社,2009.
[2] AGOSTINELLI A, NOBLES D, MOCKRIDGE C R. An experimental investigation of radial thrust in centrifugal pumps[J]. Journal of engineering for gas turbines & power, 1960, 82(2):120-125.
[3] IVERSEN H W, ROLLING R E, CARLSON J J. Volute pressure distribution, radial force on the impeller, and volute mixing losses of a radial flow centrifugal pump[J]. Journal of engineering for gas turbines & power, 1960, 82(2):136-143.
[4] HERGT P, KRIEGER P, HERGT P, et al. Radial forces in centrifugal pumps with guide vanes[J]. 1969, 184(314):101-107.
[5] UCHIDA N, IMAICHI K, SHIRAI T. Radial force on the impeller of a centrifugal pump[J]. Bulletin of JSME, 1971, 14(76):1106-1117.
[6] CHAMIEH D S, ACOSTA A J, BRENNEN C E, et al. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller[J]. Journal of fluids engineering, 1985, 107(3):307-315.
[7] BRAUN O. Part load flow in radial centrifugal pumps[D]. Lausanne:EPFL, 2009.
[8] 王福军, 张玲, 张志民. 轴流泵不稳定流场的压力脉动特性研究[J]. 水利学报,2007, 38(8):1003-1009.
WANG Fujun, ZHANG Ling, ZHANG Zhimin.Study on pressure fluctuation of unsteady flow field of axial flow pump [J]. Journal of hydraulic engineering, 2007,38(8): 1003-1009.(in Chinese)
[9]   
[10] MIORINI R L, WU H, TAN D, et al. Three-dimensional structure and turbulence within the tip leakage vortex of an axial waterjet pump[C]//Proceedings of ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. New York:ASME, 2011:271-281.
[11] 潘中永,李俊杰,李晓俊,等. 斜流泵不稳定特性及旋转失速研究[J]. 农业机械学报,2012, 43(5):64-68.
PAN Zhongyong, LI Junjie, LI Xiaojun. Instability characteristics and rotational stall of a mixed flow pump [J].Transactions of the CSAM, 2012, 43(5): 64-68.(in Chinese)
[12] 何秀华. 水泵叶频压力脉动形成的机理探讨[J]. 机械设计与制造工程, 1996,25(6):38-39.
HE Xiuhua. The discussion on the mechanism of pressure fluctuation of water pump[J].Mechanical science and technology, 1996,25(6):38-39.(in Chinese)
[13] 邹萍萍. 高比转速斜流泵内部压力脉动特性研究[D]. 镇江:江苏大学, 2011.
[14] 施卫东, 邹萍萍, 张德胜,等. 高比转速斜流泵内部非定常压力脉动特性[J]. 农业工程学报, 2011, 27(4):147-152.
SHI Weidong, ZOU Pingping, ZHANG Desheng. The unsteady pressure pulsation characteristics of high specific speed mixed flow pump [J]. Transactions of the CSAE, 2011, 27(4): 147-152.(in Chinese)
[1] 李贵东, 王洋, 杨学明, 赵立峰, 吴文, 胡日新. 基于大涡模拟的射流式离心泵射流器内部的流动特性[J]. 排灌机械工程学报, 2017, 35(5): 369-374.
[2] 韩冬冬, 于凤荣, 张思青. 水泵水轮机水轮机工况全流道三维非定常数值模拟[J]. 排灌机械工程学报, 2017, 35(4): 325-332.
[3] 刘志超, 孔繁余, 王洋, 谢山峰, 赵立峰. 非等距叶片分布对旋涡自吸泵压力脉动的影响[J]. 排灌机械工程学报, 2017, 35(2): 113-118.
[4] 顾延东, 袁寿其, 裴吉, 刘永, 曹健. 导叶安装位置对混流泵压力脉动特性的影响[J]. 排灌机械工程学报, 2017, 35(2): 93-99.
[5] 史广泰, 刘小兵, 魏文景, 刘洋. 含导叶的液力透平内部压力脉动特性[J]. 排灌机械工程学报, 2017, 35(1): 6-12.
[6] 张霞, 袁寿其, 张金凤, 黄茜. 螺旋形蜗壳型式对高比转数离心泵性能的影响[J]. 排灌机械工程学报, 2017, 35(1): 25-31.
[7] 黄茜, 袁寿其, 张金凤, 张霞. 叶片包角对高比转数离心泵性能的影响[J]. 排灌机械工程学报, 2016, 34(9): 742-747.
[8] 柴立平, 叶欢, 任志明, 李辉. 叶轮参数对泵出口压力脉动的影响[J]. 排灌机械工程学报, 2016, 34(8): 645-650.
[9] 马新华, 冯琦, 蒋小平, 王伟, 陆伟刚. 导叶叶片数对多级离心泵压力脉动的影响[J]. 排灌机械工程学报, 2016, 34(8): 665-671.
[10] 钱忠东, 陆杰, 郭志伟, 张建军. 水泵水轮机在水轮机工况下压力脉动特性[J]. 排灌机械工程学报, 2016, 34(8): 672-678.
[11] 郭义航, 袁寿其, 骆寅, 孙慧. 基于CFD的离心泵叶片水力矩非定常特性[J]. 排灌机械工程学报, 2016, 34(6): 470-476.
[12] 仇晶, 赵斌娟, 赵尤飞, 陈汇龙, 张成虎. 基于流固耦合的隔舌位置对双流道泵综合性能的影响[J]. 排灌机械工程学报, 2016, 34(6): 496-503.
[13] 王业芳, 袁寿其, 张金凤, 冒杰云, 黄茜. 低比转数离心泵小流量工况下的压力脉动特性[J]. 排灌机械工程学报, 2016, 34(5): 399-405.
[14] 王家斌, 陈佳, 袁寿其, 裴吉, 孟凡. 双吸双蜗壳离心泵隔舌处的压力脉动特性[J]. 排灌机械工程学报, 2016, 34(4): 283-288.
[15] 蒋玲林, 刘厚林, 王凯, 邵昌. 径向导叶出口型式对洒水车泵压力脉动的影响[J]. 排灌机械工程学报, 2016, 34(4): 289-293.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved