排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2017, Vol. 35 Issue (2): 126-132    DOI: 10.3969/j.issn.1674-8530.15.0278
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
轴流泵转子系统水中模态分析
陈宇杰1, 郑源2, 阚阚1, 张海胜3, 徐建叶3, 陈鹏1, 陈荣杰4
1.河海大学水利水电学院, 江苏 南京 210098; 2.河海大学水资源高效利用与工程安全国家工程研究中心, 江苏 南京 210098; 3.盐城市通榆河枢纽工程管理处, 江苏 盐城 224511; 4.河海大学能源与电气学院, 江苏 南京 211100
Modal analysis of axial-flow pump rotor system in water
CHEN Yujie1, ZHENG Yuan2, KAN Kan1, ZHANG Haisheng3, XU Jianye3, CHEN Peng1, CHEN Rongjie4
1.College of Water Conservancy and Hydropower, Hohai University, Nanjing, Jiangsu 210098, China; 2.National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, Jiangsu 210098, China; 3.Tongyu River Management Division in Yancheng, Yancheng, Jiangsu 224511, China; 4.College of Energy and Electric Engineering, Hohai University, Nanjing, Jiangsu 211100, China
 全文: PDF (1545 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究轴流泵转子系统在水中的模态以及水介质对于模态的影响,保障轴流泵机组高效稳定运行,避免发生共振,采用基于流固耦合的理论对ANSYS Workbench平台进行二次开发,通过编写APDL语言实现流体与固体计算方程的耦合,计算轴流泵转子系统在空气中以及水中的模态.结果表明:与流场计算不同,模态分析过程中对结构域进行三维建模时,不能将结构中的空心部分简化为实体;水介质的存在使得转子系统各阶固有频率均有下降,频率降低系数的范围为7.95%~13.29%,各阶频率的下降系数未呈现出显著的规律性;轴流泵的叶片通过频率为15 Hz,导叶通过频率为25 Hz,这两个机组特征频率的值远小于转子系统在水中的各阶固有频率,可以认为轴流泵在工作过程中发生共振的可能性比较小.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇杰
郑源
阚阚
张海胜
徐建叶
陈鹏
陈荣杰
关键词轴流泵   转子系统   模态分析   流固耦合   固有频率   共振     
Abstract: Studying the modal of axial-flow pump rotor system in water and the impact of water on modal is important to ensure the efficiency, stable running of the pump and to avoid resonance. By secondly developing the ANSYS Workbench based on fluid-solid coupling theory, we compiled APDL language to couple the fluid and solid calculation equation so as to calculate the modal of axial-flow pump rotor system in air and water. The results show that when the three-dimensional modeling of structure domain was carried out before modal analysis, the hollow portion of structure cannot be simplified to solid area, which is different from flow field analysis. The existence of water makes each order natural frequency of rotor system declined. The depreciation coefficient ranges from 7.95% to 13.29% and each order depreciation coefficient does not show an obvious rule. The blade passing frequency of axial-flow pump is 15 Hz and the guide passing frequency of axial-flow pump is 25 Hz, which are much less than each order natural frequency of axial-flow pump rotor system in water, so it is less likely to generate resonance during running time.
Key wordsaxial-flow pump   rotor system   modal analysis   fluid-solid coupling   resonance natural frequency   resonance   
收稿日期: 2015-12-17;
基金资助:国家自然科学基金重点资助项目(51339005);国家自然科学基金资助项目(51579080);中央高校基本科研业务费专项资金资助项目(2015B33814)
通讯作者: 郑源(1964—),男,山东日照人,教授,博士生导师(通信作者,zhengyuan@hhu.edu.cn),主要从事流体机械及水利水电工程技术研究.   
作者简介: 陈宇杰(1992—),男,江苏苏州人,硕士研究生(cyjkidd@126.com),主要从事流体机械及水利水电工程技术研究.
引用本文:   
陈宇杰,郑源,阚阚等. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017, 35(2): 126-132.
CHEN Yu-Jie-,ZHENG Yuan-,HAN Han- et al. Modal analysis of axial-flow pump rotor system in water[J]. Journal of Drainage and Irrigation Machinery Engin, 2017, 35(2): 126-132.
 
[1] 郑源,刘君,周大庆,等.大型轴流泵装置模型试验的压力脉动[J].排灌机械工程报,2010,28(1):51-55.
ZHENG Yuan, LIU Jun, ZHOU Daqing, et al. Pressure pulsation of model test in large-size axial-flow pump[J]. Journal of drainage and irrigation machinery engineering, 2010, 28(1): 51-55.(in Chinese)
[2] ZHANG Desheng, SHI Weidong, VAN ESCH B P M, et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump[J]. Computers & fluids, 2015, 112(2):61-71.
[3] 张德胜, 施卫东, 张华,等. 不同湍流模型在轴流泵性能预测中的应用[J]. 农业工程学报, 2012,28(1):66-71.
ZHANG Desheng, SHI Weidong, ZHANG Hua, et al. Application of different turbulence models for predicting performance of axial-flow pump[J]. Transactions of the CSAE, 2012, 28(1):66-71.(in Chinese)
[4] 张立翔, 陈香林, 闫华. 混流式水轮机转轮叶片流固耦合振动特性分析[J]. 水电能源科学, 2005, 23(2):38-41.
ZHANG Lixiang, CHEN Xiangling, YAN Hua. Dynamic characteristic analysis of fransis hydro turbine blades with fluid-structure interaction[J]. Water resources and power, 2005,23(2):38-41.(in Chinese)
[5] 肖若富, 王正伟, 罗永要. 涡带工况下混流式水轮机转轮动应力特性分析[J]. 水力发电学报, 2007, 26(4):130-134.
XIAO Ruofu, WANG Zhengwei, LUO Yongyao. Dynamic stress analysis of francis turbine with partial load[J]. Journal of hydroelectric engineering, 2007, 26(4):130-134.(in Chinese)
[6] 郑小波, 罗兴琦, 邬海军. 轴流式叶片的流固耦合振动特性分析[J]. 西安理工大学学报, 2005, 21(4):342-346.
ZHENG Xiaobo, LUO Xingqi, WU Haijun. Analysis of fluid-solid coupling dynamic characteristics for the axial flow blades[J]. Journal of Xi′an University of Technology, 2005,21(4):342-346.(in Chinese)
[7] 肖若富, 韦彩新, 韩凤琴,等. 混流式水轮机转轮的动力学研究[J]. 大电机技术, 2001(7):41-43.
[8] XIAO Ruofu, WEI Caixin, HAN Fengqin, et al. Study on dynamic analysis of francis turbine runner[J]. Large electric machine and hydraulic turbine, 2001(7):41-43.(in Chinese)
[9] 刘小兵, 刘德民, 曾永忠,等. 基于流固耦合的水轮机振动的数值研究[J]. 水动力学研究与进展, 2008, 23(6):715-721.
LIU Xiaobin, LIU Demin, ZENG Yongzhong, et al. Numerical simulation of vibration of hydraulic turbine based on fluid-structure coupling[J]. Chinese journal of hydrodynamics, 2008, 23(6):715-721.(in Chinese)
[10] 梁权伟, 王正伟, 方源. 考虑流固耦合的混流式水轮机转轮模态分析[J]. 水力发电学报, 2004, 23(3):116-120.
LIANG Quanwei, WANG Zhengwei, FANG Yuan. Modal analysis of francis turbine with considering FSI[J]. Journal of hydroelectric engineering, 2004, 23(3):116-120.(in Chinese)
[11] 刘德民,刘小兵,李娟. 基于流固耦合的水轮机振动分析[J]. 流体传动与控制,2008(1):21-25.
[12] LIU Demin, LIU Xiaojun, LI Juan. Vibration analysis of turbine based on fluid structure coupling[J]. Fluid power transmission and control, 2008(1): 21-25.(in Chinese)
[13] 廖翠林, 王福军. 质量矩阵对水轮机组固有振动模态计算结果的影响[J]. 水力发电学报, 2008, 27(5):153-157.
LIAO Cuilin, WANG Fujun. Influence of mass matrix on natural model of hydraulic turbine[J]. Journal of hydroelectric engineering, 2008, 27(5):153-157.(in Chinese)
[14] 廖伟丽, 徐斌, 逯鹏, 等. 部分负荷下混流式水轮机转轮叶片变形对流场的影响[J]. 机械工程学报, 2006, 42(6): 55-59.
LIAO Weili, XU Bin, LU Peng, et al. Influence of runner blade deformation on fluid field of francis turbine under part load[J]. Chinese journal of mechanical engineering, 2006, 42(6): 55-59.(in Chinese)
[15] 徐建国. 轴流泵叶片应力与模态分析[D]. 扬州:扬州大学,2008.
[16] 施卫东, 郭艳磊, 张德胜, 等. 大型潜水轴流泵转子部件湿模态数值模拟[J]. 农业工程学报, 2013, 29(24):72-78.
SHI Weidong, GUO Yanlei, ZHANG Desheng, et al. Numerical simulation on modal of large submersible axial-flow pump rotor[J]. Transactions of the CSAE, 2013, 29(24):72-78.(in Chinese)
[17] 代翠, 柏宇星, 董亮, 等. 离心泵作透平壳体模态分析[J]. 排灌机械工程学报, 2015, 33(10):835-839. 浏览
DAI Cui, BO Yuxing, DONG Liang, et al. Modal analysis of centrifugal pump casing under pumps as turbines[J]. Journal of drainage and irrigation machinery engineering, 2015, 33(10):835-839.(in Chinese)
[18] 张新, 郑源, 钱钧, 等. 基于流固耦合的卧式轴流泵叶轮模态分析[J]. 水电能源科学, 2015, 33(7): 164-167.
ZHANG Xin, ZHENG Yuan, QIAN Jun, et al. Modal analysis of horizontal-axial-flow pump impeller based on fluid solid coupling[J]. Water resources and power, 2015, 33(7): 164-167.(in Chinese)
[19] 张正阳, 郑源, 张新. 预应力与水介质对轴流泵叶轮模态的影响[J]. 水电能源科学, 2015, 33(4):160-163.
ZHANG Zhengyang, ZHENG Yuan, ZHANG Xin. Influence of pre-stress and aqueous medium on impeller modal of axial-flow pump[J]. Water resources and power, 2015, 33(4): 160-163.(in Chinese)
[1] 王丽慧, 施伟, 沈昌荣, 徐磊. 立式轴流泵装置模型水力性能数值分析及预测[J]. 排灌机械工程学报, 2016, 34(9): 776-782.
[2] 燕浩, 柴立平, 李跃, 李强, 石海峡. 大型排水泵装置空化区间的数值计算[J]. 排灌机械工程学报, 2016, 34(8): 679-685.
[3] 石磊, 张德胜, 陈健, 耿琳琳, 刘俊龙. 基于PANS模型的轴流泵叶顶空化特性[J]. 排灌机械工程学报, 2016, 34(7): 590-596.
[4] 夏水晶, 袁建平, 孙潇, 周帮伦, 李彦军. 轴流泵叶片的参数化造型及多参数优化[J]. 排灌机械工程学报, 2016, 34(7): 603-607.
[5] 曹卫东, 刘冰, 张忆宁, 刘光辉. 预应力下矿用抢险排水泵转子部件湿模态计算[J]. 排灌机械工程学报, 2016, 34(6): 477-482.
[6] 仇晶, 赵斌娟, 赵尤飞, 陈汇龙, 张成虎. 基于流固耦合的隔舌位置对双流道泵综合性能的影响[J]. 排灌机械工程学报, 2016, 34(6): 496-503.
[7] 王宁, 黄彪, 吴钦, 王国玉. 绕水翼空化流动及振动特性的试验与数值模拟[J]. 排灌机械工程学报, 2016, 34(4): 321-327.
[8] 周大庆, 刘跃飞. 基于VOF模型的轴流泵机组起动过程数值模拟[J]. 排灌机械工程学报, 2016, 34(4): 307-312.
[9] 王党雄, 曹卫东, 张忆宁, 刘晓娟, 马金星. 蜗壳断面形状及叶轮位置对蜗壳式轴流泵性能的影响[J]. 排灌机械工程学报, 2016, 34(2): 105-109.
[10] 常浩, 刘建瑞, 李伟, 武永生, 高振军, 汤富俊. 大流量自吸离心泵机组轴与曲轴的模态分析[J]. 排灌机械工程学报, 2016, 34(12): 1035-1039.
[11] 石丽建, 汤方平, 谢荣盛, 谢传流. 轮毂比对轴流式叶轮水力性能的影响[J]. 排灌机械工程学报, 2016, 34(12): 1045-1050.
[12] 符恒, 卢金玲, 陈楠, 冯建军, 陈森林, 罗兴锜. 多级轴流泵内叶轮时序效应数值模拟[J]. 排灌机械工程学报, 2016, 34(11): 934-940.
[13] 马鹏飞, 王军, 刘卫伟, 蔡奎义. 弯管对双向轴流泵导叶区流动的影响[J]. 排灌机械工程学报, 2015, 33(8): 645-650.
[14] 董兴华, 郭艳磊, 毕祯, 黎义斌, 程效锐. 基于CFX与Workbench耦合的轴流泵的内外特性[J]. 排灌机械工程学报, 2015, 33(6): 488-493.
[15] 刘建瑞, 陈斌, 张金凤, 骆寅, 汤富俊. 余热排出泵水中模态分析[J]. 排灌机械工程学报, 2015, 33(4): 290-295.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved