排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (12): 1099-1104    DOI: 10.3969/j.issn.1674-8530.16.0221
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于LS-SVM的螺旋定量加料预测及试验研究
崔守娟1, 张西良1, 徐云峰2, 粟强1, 孙祥1, 张宇1
1.江苏大学机械工程学院, 江苏 镇江 212013; 2.江苏大学现代农业装备与技术教育部重点实验室, 江苏 镇江 212013
Experimental research and prediction of screw dosing based on least squares support vector machine
CUI Shoujuan1, ZHANG Xiliang1, XU Yunfeng2, SU Qiang1, SUN Xiang1, ZHANG Yu1
1.School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1516 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为提高螺旋定量加料性能,开展了智能预测技术对加料量准确性的影响研究.针对考虑螺旋速度和填充率等因素对螺旋不连续定量加料的影响难以用精确数学模型来描述加料量的问题,以螺旋加料装置为研究对象,加料量为预测目标,螺杆旋转角度为主影响因子,螺旋速度和填充率为影响因素, 建立了一种基于最小二乘支持向量机(LS-SVM)与旋转角度的加料量预测模型,研究加料量与主影响因子和影响因素之间的复杂非线性关系.采用交叉验证方法辨识模型参数,开展螺旋不连续定量加料量预测与实际加料试验.结果表明:该模型的预测结果与设定值较吻合,优于理论估算和BP神经网络预测模型,采用分料装置填充率接近1时,预测误差平均为±0.02.该模型可应用于螺旋不连续定量加料的预测与控制.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔守娟
张西良
徐云峰
粟强
孙祥
张宇
关键词螺旋加料机   模型   最小二乘支持向量机   加料量   旋转角度     
Abstract: The feeding precision of screw feeder is determined by various factors, such as the rotational speed, filling rate and so on. It is usually difficult to calculate the accurate feeding quantity through a precise mathematical model. In this paper, we predicted the feeding quantity through machine learning based on three factors. The most important factor was the rotational angle, the other two factors were rotational speed and filling rate. The least squares support vector machine(LS-SVM)was used to learn the nonlinear relationship between the feeding quantity and these factors. To achieve the best performance, the parameters of LS-SVM were tuned through the cross-validation. A real feeding experiment was carried out to verify our method. The experimental results demonstrate that the prediction values of LS-SVM are consistent with the real values. Moreover, the precision of our LS-SVM is better than the estimation from theoretical calculation and BPNN. The prediction error of our method is only ±0.02 if the filling rate is close to 1. In summary, our method has high precision and can be applied to the control of screw feeder.
Key wordsscrew feeder   models   least squares support vector machine(LS-SVM)   feeding quantity   rotational angle   
收稿日期: 2016-09-20;
基金资助:国家自然科学基金资助项目(51175230);江苏省普通高校研究生科研创新计划项目(CXLX13_646)
通讯作者: 张西良(1964—),男,江苏丹阳人,教授,博士生导师(通信作者,190337373@qq.com),主要从事高效节能机械设计与农业信息检测仪器研究.   
作者简介: 崔守娟(1980—),女,江苏灌云人,讲师,博士研究生(780444526@qq.com),主要从事测控系统设计及控制理论研究.
引用本文:   
崔守娟,张西良,徐云峰等. 基于LS-SVM的螺旋定量加料预测及试验研究[J]. 排灌机械工程学报, 2016, 34(12): 1099-1104.
CUI Shou-Juan-,ZHANG Xi-Liang-,XU Yun-Feng- et al. Experimental research and prediction of screw dosing based on least squares support vector machine[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(12): 1099-1104.
 
[1] 李振亮,付长江,李亚.定量螺旋给料机的结构研究[J]. 盐业与化工,2010,39(1):27-29.
LI Zhenliang, FU Changjiang, LI Ya. Quantitative spiral feeder structural research[J]. Journal of salt and chemical industry, 2010, 39(1): 27-29.(in Chinese)
[2] 张西良,罗胜,许俊,等.基于智能Agent螺旋不连续定量加料方法及系统:201110402790.2[P].2012-06-27.
[3] MOYSEY Paul A. Discrete element simulation of the solids conveying zone of a single-screw extruder[D]. Hamilton: Mc Master University, 2007.
[4] 张西良,马奎,王辉,等,颗粒尺寸对螺旋加料机定量加料性能的影响[J]. 农业工程学报,2014,30(5):19-25.
[5] ZHANG Xiliang, MA Kui, WANG Hui, et al. Effect of particle size on precision dosing of screw feeder [J]. Transactions of the CSAE, 2014, 30(5): 19-25.(in Chinese)
[6] HOU Q F, DONG K J, YU A B.DEM study of the flow of cohesive particles in a screw feeder [J]. Powder technology, 2014, 236: 529-539.
[7] KRETZ D, CALLAU-Monje S, HITSCHLER M, et al. Discrete element method(DEM)simulation and validation of a screw feeder system[J]. Powder technology, 2016, 287: 131-138.
[8] ROBERTS A W. The influence of granular vortex motion on the volumetric performance of enclosed screw conve-yors [J]. Powder technology,1999(104):56-67.
[9] 李振亮,万文艳,李亚.定量螺旋给料机在粉洗盐生产中的应用研究[J].盐业与化工,2008,37(2):8-19.
LI Zhenliang,WAN Wenyan,LI Ya.Application and research on the quantitative spiral conveyor for the powder salt production[J]. Salt and chemical industry,2008,37(2):8-19.(in Chinese)
[10] 罗胜,张西良,许俊,等. 螺旋不连续加料装置结构优化与性能仿真[J].农业工程学报,2013,29(3):250-257.
LUO Sheng, ZHANG Xiliang, XU Jun, et al. Structure optimization and performance simulation of screw discontinuous feeding device[J]. Transactions of the CSAE,2013, 29(3): 250-257.(in Chinese)
[11] 邹心遥,姚若河. 基于 BP 神经网络的电子元器件寿命预测[J]. 微电子学与计算机,2009,26(1): 52-54.
ZOU Xinyao,YAO Ruohe. Life prediction of electronic devices based on forecast system of back propagation neural network[J].Microelectronics and computer,2009,26(1): 52-54.(in Chinese)
[12] 徐俐. 基于BP神经网络的动态定量称重控制系统的研究和设计[D].山东大学, 2005:15-19.
[13] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural proces-sing letters, 1999, 9(3): 293-300.
[14] 龙文, 梁昔明, 龙祖强. 基于混合 PSO 优化的 LSSVM 锅炉烟气含氧量预测控制[J].中南大学学报(自然科学版), 2012, 43(3): 980-985.
LONG Wen, LIANG Ximing, LONG Zhuqiang. O2 content in flue gas of boilers predictive control based on hybrid PSO and LSSVM[J]. Journal of Central South University(science and technology), 2012, 43(3): 980-985.(in Chinese)
[15] 万昌江,姜松.CAD在碾米机零部件设计中的应用[J].粮食与饲料工业,1997(8):10-12.
[16]   WAN Changjiaing, JIANG Song. Application of compu-ter aided design(CAD)for designing components in rice whitener[J]. Food and feed industry. 1997(8):10-12.(in Chinese)
[17] VAPNIK V,CHAPELLE O.Bounds on error expectation for support vector machines[J].Neural computation,2000,12(9): 2013-2036.
[18] SCHOLKOPF B, SMOLA A J. Learning with kernels[M]. Cambridge, MA: MIT Press, 2001: 222-226.
[1] 柴红阳,,陈俊英,*,张林,王嘉瑞,,刘畅,. 不同斥水程度黏壤土一维入渗特性试验研究[J]. 排灌机械工程学报, 2019, 37(7): 632-638.
[2] 张艺璇,崔宁博,*,冯禹,,乐进华,王军,刘双美. 西北地区地表太阳总辐射计算模型适用性评价[J]. 排灌机械工程学报, 2019, 37(6): 545-552.
[3] 俞芸芸,周大庆*,戴启璠,梁豪杰,仲子夜. 轴流泵叶轮的三维多参数设计及试验[J]. 排灌机械工程学报, 2019, 37(5): 393-399.
[4] 孙彩珍,李红*,汤攀. 三通调节阀分流比及内部流动特性分析[J]. 排灌机械工程学报, 2019, 37(5): 441-446.
[5] 杨从新,,张扬,*,钱晨,. 专用堆型对应的核主泵正反转流动数值模拟[J]. 排灌机械工程学报, 2019, 37(5): 381-386.
[6] 陈琳,费良军*,金世杰,王子路,钟韵. 不同含沙率浑水膜孔灌三维Green-Ampt入渗模型[J]. 排灌机械工程学报, 2019, 37(4): 352-357.
[7] 袁益超,朱波,于文汇,詹水清,李昌烽*. 湍流减阻多级转换特性及湍流特性分析研究[J]. 排灌机械工程学报, 2019, 37(3): 242-247.
[8] 贺照明,刘艳芳,荆腾,张桂杰,刘洪艳,王颢. 可控关闭体积心脏瓣膜模型[J]. 排灌机械工程学报, 2019, 37(1): 1-6.
[9] 于贤磊, 陈松山, 杨夏威, 周明耀*. 大型灌溉管网减压阀特性数模分析与试验研究[J]. 排灌机械工程学报, 2018, 36(9): 824-828.
[10] 杨伟才, 毛晓敏*. 气候变化影响下作物模型的不确定性[J]. 排灌机械工程学报, 2018, 36(9): 874-879.
[11] 刘伟佳,, 李占斌*, 邹大胜, 裴青宝,. 非吸附性离子浓度对红壤入渗特性的影响[J]. 排灌机械工程学报, 2018, 36(8): 645-650.
[12] 李扬帆, 刘俊萍*, 李滔, 许继恩. 多因素下全射流喷头射程计算模型及试验[J]. 排灌机械工程学报, 2018, 36(8): 685-689.
[13] 熊玉江, 徐俊增*, 李亚龙, 李江安, 孙勇. 南方平原灌区稻田涝水过程模拟[J]. 排灌机械工程学报, 2018, 36(8): 725-731.
[14] 江显群, 陈武奋*. BP神经网络与GA-BP农作物需水量预测模型对比[J]. 排灌机械工程学报, 2018, 36(8): 762-766.
[15] 张皓杰, 崔宁博,*, 徐颖, 钟丹, 胡笑涛, 龚道枝. 基于ELM的西北旱区参考作物蒸散量预报模型[J]. 排灌机械工程学报, 2018, 36(8): 779-784.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved