排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (12): 1035-1039    DOI: 10.3969/j.issn.1674-8530.16.0041
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
大流量自吸离心泵机组轴与曲轴的模态分析
常浩, 刘建瑞, 李伟, 武永生, 高振军, 汤富俊
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Modal analysis of a high flow self-priming centrifugal pump shaft and crank-shaft
CHANG Hao, LIU Jianrui, WU Yongsheng, GAO Zhenjun, TANG Fujun
National Research Center of pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1929 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究大流量自吸离心泵机组轴与曲轴的振动特性,基于ANSYS有限元分析软件对大流量自吸离心泵机组轴与曲轴的模态特性进行研究,分析了大流量自吸离心泵机组轴与曲轴前5阶振型图及固有频率,并对其各阶固有频率对应的临界转速进行研究.研究表明,大流量自吸离心泵机组轴在支撑间距以及形式的影响下,主要体现出扭曲振动,且第4阶发生了2次扭转变形,呈现对称变化分布.与此同时,大流量自吸离心泵机组轴的设计转速为2 200.00 r/min,而大流量自吸离心泵机组轴的最低临界转速达到2 848.07 r/min,高于实际转速2 200.00 r/min,从而避免了发生共振的可能.采用合理的结构设计可以有效地避免大流量自吸离心泵机组轴与曲轴发生共振,通过模态分析得到振型图和动画显示,清晰地展现出大流量自吸离心泵机组轴与曲轴的动态特性,为系统的安全运行、振动分析以及结构的优化设计提供重要的理论依据.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
常浩
刘建瑞
李伟
武永生
高振军
汤富俊
关键词大流量自吸离心泵   模态分析   共振   优化设计     
Abstract: To study the vibration characteristics of the high flow self-priming centrifugal pump shaft and crank-shaft, based on ANSYS finite element analysis software. The high flow self-priming centrifugal pump shaft and crank-shaft modal characteristics were studied, the shaft and crank-shaft front 5-order vibration mode and natural frequency diagram of the high flow self-priming centrifugal pump were analyzed, and its natural frequency corresponding to the critical speed was studied. It is found that a high flow self-priming centrifugal pump shaft in the support spacing and forms mainly reflects the twisted vibration, and the fourth-order torsional deformation occurs two times, showing the symmetrical distribution change. At the same time, the design speed of the high flow of self-priming centrifugal pump shaft is 2 200 r/min, while the minimum critical speed of the high flow self-priming centrifugal pump shaft is 2 848.07 r/min, far higher than the actual speed of 2 200.00 r/min, thereby avoiding the possibility of resonance.The results show that the reasonable structure design can effectively avoid the high flow self-priming centrifugal pump shaft and crank-shaft resonance. Vibration mode diagrams and animation obtained by modal analysis, clearly show the dynamic characteristics of the high flow self-priming centrifugal pump shaft and crank-shaft, which provides an important theoretical basis for the safe operation of the system, vibration analysis and optimization design of the structure.
Key wordshigh flow rate self-priming centrifugal pump   modal analysis   resonance   optimal design   
收稿日期: 2016-02-24;
基金资助:国家863计划项目(2011AA100508);江苏省重点研发计划(现代农业)项目(BE2016319);常州市科技支撑计划项目(CE20162004)
通讯作者: 刘建瑞(1952—),男,甘肃静宁人,研究员,博士生导师(通信作者,ljrwjj@126.com),主要从事流体机械研究.   
作者简介: 常浩(1991—),男,内蒙古赤峰人,硕士研究生(changhao1514@163.com),主要从事流体机械研究.
引用本文:   
常浩,刘建瑞,李伟等. 大流量自吸离心泵机组轴与曲轴的模态分析[J]. 排灌机械工程学报, 2016, 34(12): 1035-1039.
CHANG Hao,LIU Jian-Rui,LI Wei et al. Modal analysis of a high flow self-priming centrifugal pump shaft and crank-shaft[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(12): 1035-1039.
 
[1] 刘建瑞,汤富俊,陈斌,等. 大型自吸离心泵设计及试验研究[J]. 水泵技术,2014(5):1-5.
[2] LIU Jianrui,TANG Fujun, CHEN Bin, et al. Large self-priming centrifugal pump design and experimental study [J]. Pump technology,2014(5):1-5.(in Chinese)
[3] MAITI B,SESHADRI V,MALHOTRA R C. Analysis of flow through centrifugal pump impellers by finite element method[J]. Applied scientific research,1989,46(2):105-126.
[4] CHAO L I,LI-KUN A I,LIU Y F,et al. Dynamic modal analysis of high-speed rotary turbo-expander impeller with finite element method[J]. Journal of Chinese so-ciety of power engineering,2010,30(3):161-165.
[5] LUO T S,DAI R. Modal analysis of integrated radial inflow impeller with finite element method[J]. Chinese internal combustion engine engineering,2005,26(1):77-80.
[6] ZHANG R,MA W X,LU X Q. Modal analysis of high power variable speed hydrodynamic coupling impellers[J]. Advanced materials research,2011,346:236-240.
[7] 杜喆华,姜勇,赵俊涛.基于模态分析和CFD的船用离心泵减振[J]. 舰船科学技术,2012,34(10):109-114.
DU Zhehua,JIANG Yong,ZHAO Juntao. Reduce vibration measures for ship centrifugal pump based on modal analysis and CFD simulation[J].Ship science and technology, 2012,34(10):109-114.(in Chinese)
[8] 刘君,袁建平.带预应力的高速离心泵转子模态分析[J].中国农村水利水电,2014(2):117-121.
[9] LIU Jun,YUAN Jianping. A modal analysis of the rotor of high-speed centrifugal pumps with prestress[J].China rural water and hydropower, 2014(2):117-121.(in Chinese)
[10] 黄浩钦,刘厚林,王勇,等. 基于流固耦合的船用离心泵转子应力应变及模态研究[J]. 农业工程学报,2014,30(15):98-105.
HUANG H Q,LIU H L,WANG Y,et al. Stress-strain and modal analysis on rotor of marine centrifugal pump based on fluid-structure interaction[J]. Transactions of the CSAE,2014,30(15):98-105.(in Chinese)
[11] 张晖,李宝良. 基于ANSYS软件的高压小流量离心泵泵轴模态分析[J]. 水泵技术,2010(6):18-21.
[12]   ZHANG Hui,LI Baoliang. ANSYS software based on high pressure low flow centrifugal pump shaft modal analysis [J]. Pump technology,2010(6): 18-21.(in Chinese)
[13] 刘平,徐志强,徐中伟. 离心式吸鱼泵叶轮的设计[J]. 流体机械, 2016,44(3):50-54.
LIU Ping,XU Zhiqiang,XU Zhongwei. Design of centri-fugal fish pump impeller[J]. Fluid machinery, 2016, 44(3): 50-54.(in Chinese)
[14] 鲁志伟.适用于有限元计算的四面体网格的生成[D].青岛:青岛大学:2013.
[15]   
[16] 张坤金,郑忠才,高岩,等. 不同网格划分对机体有限元模态分析结果的影响[J]. 小型内燃机与摩托车,2009,38(5):69-71.
ZHANG Kunjin,ZHENG Zhongcai,GAO Yan,et al. Effects on the body in different mesh finite element modal analysis results [J]. Small internal combustion engine and motorcycle,2009,38(5): 69-71.(in Chinese)
[17] 陈明华.基于有限元和多体动力学某船推进系统振动特性仿真分析[D].镇江:江苏科技大学,2013.
[18] 张涛,巴鹏,陈道亮,等. 单拐曲轴参数化建模及模态分析[J]. 机械设计与制造,2013(8): 78-80.
[19] ZHANG Tao,BA Peng,CHEN Daoliang,et al. Parame-tric modeling and modal analysis of single crank crankshaft [J]. Mechanical design and manufacture,2013(8):78-80.(in Chinese)
[20] 白稳乐,姚宁平,杜小山,等. 钻探用泥浆泵曲轴的模态分析[J]. 煤田地质与勘探,2010,38(3):73-75.
BAI Wenle,YAO Ningping,DU Xiaoshan,et al. Modal analysis of the crankshaft of drilling mud pump [J]. Coal geology and exploration,2010,38(3):73-75.(in Chinese)
[21] 于秋华,刘淑梅,刘雅辉,等. 基于UG和ANSYS的曲轴设计及分析[J]. 上海工程技术大学学报,2013,27(4):302-305.
YU Qiuhua,LIU Shumei,LIU Yahui,et al. Design and analysis of crankshaft based on UG and ANSYS [J]. Journal of Shanghai University of Engineering Science,2013,27(4): 302-305.(in Chinese)
[1] 杨勇飞,李伟*,施卫东,马新华,张文全,许荣军. 超低比转数自平衡多级离心泵转子模态分析[J]. 排灌机械工程学报, 2019, 37(7): 593-599.
[2] 张智伟,施卫东*,张德胜,陈宗贺,黄俊. 基于热流固耦合的LNG低温潜液泵转子部件模态分析[J]. 排灌机械工程学报, 2019, 37(3): 211-215.
[3] 陆静, 汤跃, 程俊.. 基于正交试验的斜击式水涡轮优化与分析[J]. 排灌机械工程学报, 2019, 37(1): 38-42.
[4] 陆静*, 程俊. JP75型卷盘式喷灌机水涡轮能量转换数值模拟分析[J]. 排灌机械工程学报, 2018, 36(5): 448-453.
[5] 汤玲迪, 袁寿其, 邱志鹏. 卷盘式喷灌机水涡轮发展与研究现状[J]. 排灌机械工程学报, 2018, 36(10): 963-968.
[6] 陆荣,袁建平,李彦军,蒋红樱. 基于神经网络模型和CFD的轴流泵自动优化[J]. 排灌机械工程学报, 2017, 35(6): 481-487.
[7] 李科, 汤跃, 赵进. 基于蜗轮蜗杆的卷盘喷灌机传动设计与优化[J]. 排灌机械工程学报, 2017, 35(5): 454-460.
[8] 陶艺, 袁寿其, 刘建瑞, 张帆, 陶建平. 陶瓷泵半开式叶轮前盖板流线对泵性能的影响[J]. 排灌机械工程学报, 2017, 35(3): 185-191.
[9] 陈宇杰, 郑源, 阚阚, 张海胜, 徐建叶, 陈鹏, 陈荣杰. 轴流泵转子系统水中模态分析[J]. 排灌机械工程学报, 2017, 35(2): 126-132.
[10] 孙丰, 汪建文,, 刘雄飞,. 风力机侧偏限速机构的机理分析及倾角优化[J]. 排灌机械工程学报, 2017, 35(2): 152-157.
[11] 孙宇新, 吴昊洋, 施凯, 唐敬伟, 沈启康. 新型双绕组无轴承磁通切换永磁电机的设计与分析[J]. 排灌机械工程学报, 2017, 35(12): 1096-1104.
[12] 马新华, 何勇冠, 陆伟刚, 蔡朋飞. 超低比转数多级离心泵水力优化与性能试验[J]. 排灌机械工程学报, 2016, 34(9): 755-760.
[13] 张前, 袁寿其, 刘俊萍, 鲍亚. 低压喷头喷嘴优化设计及内部流场数值模拟[J]. 排灌机械工程学报, 2016, 34(5): 449-454.
[14] 王伟, 施卫东, 蒋小平, 冯琦, 陆伟刚, 张德胜,. 基于正交试验及CFD的多级离心泵叶轮优化设计[J]. 排灌机械工程学报, 2016, 34(3): 191-197.
[15] 刘超, 谢伟东, 李彬, 汤红岩. 沙特某海水泵站水泵选型[J]. 排灌机械工程学报, 2016, 34(3): 216-219.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved