排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (8): 651-656    DOI: 10.3969/j.issn.1674-8530.15.0170
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
转速对核主泵空化特性的影响
付强, 张本营, 朱荣生, 曹梁
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Effect of rotating speed on cavitation performance of nuclear reactor coolant pump
FU Qiang, ZHANG Benying, ZHU Rongsheng, CAO Liang
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1768 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究转速对核主泵空化性能及进口流态的影响,应用理论分析、数值计算和试验研究的方法,对AP1000核主泵进行不同转速下的数值模拟和空化试验,得到3种频率30,40,50 Hz下不同流量(0.7Qd,1.0Qd,1.3Qd)时的空化特性,并对叶轮进口截面静压分布与泵流动性能的影响关系进行分析.结果表明:转速对小流量工况下泵的空化性能影响较大;随着转速的降低,小流量工况下,空化性能曲线趋势变化比大流量工况下明显;在不同转速的额定流量下,转速较大时,模型核主泵在装置临界空化余量(NPSHC)减小时更容易接近临界空化状态;在转速较小时,临界空化余量(NPSHC)较小,且一旦发生空化,其扬程曲线斜度下降也相对平缓;在额定转速下,模型泵在大流量时更容易接近临界空化状态;随着转速和流量的减小,更容易造成模型泵在开始试验阶段进口处产生回流,扰乱进口的流场,从而造成局部空化严重.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
付强
张本营
朱荣生
曹梁
关键词核主泵   空化性能   转速   进口流态   数值模拟   试验研究     
Abstract: To study the effect of the rotating speed on cavitation performance and inlet flow pattern of the nuclear reactor coolant pump, thenumerical simulation and cavitation test at different speeds are conducted for AP1000 nuclear reactor coolant pump by the use of theoretical analysis, numerical calculation and experiments, then cavitation characteristics with different speeds(30, 40, 50 Hz )and different flow rates(0.7Qd, 1.0Qd, 1.3Qd)are obtained. The relationship between the static pressure distribution of the impeller inlet section and flow performance of the pump is analyzed. The results show that the rotating speed has a greater impact on pump cavitation performance under low flow conditions. With rotating speed reduced, cavitation trend curve change under low flow conditions is more apparent than under the high the flow conditions. The model can more easily gain access to critical cavitation when the NPSHC reduced at a high rotating speed under rated flow at different rotating speeds. The NPSHC is lower when the model pump is at a low rotating speed, and the slope of lift curve declines slowly in cavitation. At a rated rotating speed, the model pump in high flow more easily gets access to the critical cavitation. With the rotating speed and flow decreasing, the flow rate decreases, a reflux at the inlet of the model at the beginning of the pilot phase is caused more likely, which disrupts the inlet flow field, thus resulting in local severe cavitation.
Key wordsnuclear reactor coolant pump   cavitation performance   rotating speed   inlet flow pattern   numerical simulation   experimental research   
收稿日期: 2015-07-30;
基金资助:国家自然科学基金资助项目(51379091);江苏省自然科学基金资助项目(BK20130516);江苏高校优势学科建设工程项目
通讯作者: 张本营(1991—),男,山东临沂人,硕士研究生(ujs_zby@163.com),主要从事流体机械内部流场计算研究.   
作者简介: 付强(1975—),男,黑龙江宝清人,副研究员(ujsfq@sina.com),主要从事核电用泵水力与结构设计研究.
引用本文:   
付强,张本营,朱荣生等. 转速对核主泵空化特性的影响[J]. 排灌机械工程学报, 2016, 34(8): 651-656.
FU Qiang,ZHANG Ben-Ying,ZHU Rong-Sheng et al. Effect of rotating speed on cavitation performance of nuclear reactor coolant pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(8): 651-656.
 
[1] 蔡龙,张丽平. 浅谈压水堆核电站主泵[J]. 水泵技术,2007(4): 1-9.
[2]   CAI Long, ZHANG Liping. The discussion of PWR nuclear reactor coolant pump[J]. Pump technology,2007(4): 1-9.(in Chinese)
[3] 王远隆. 中国核电装备的国产化[J]. 科技导报, 2012, 30(20): 65-70.
WANG Yuanlong. Localization of nuclear power plant equipment in China[J]. Science & technology review,2012,30(20): 65-70.(in Chinese)
[4] CHAN A M C, KAWAJI M, NAKAMURA H, et al. Experimental study of two-phase pump performance using a full size nuclear reactor pump[J]. Nuclear engineering and design, 1999, 193(11):159-172
[5] POULLIKKAS A. Effects of two-phase liguid-gas flow on the performance of nuclear reactor cooling pumps[J]. Progress in nuclear energy,2003,42(1):3-10
[6] POULLIKKAS A. Two-phase flow performance of nuclear reactor cooling pumps[J]. Progress in nuclear energy, 2000,36(2):123-130
[7] GAO Hong, GAO Feng, ZHAO Xianchao, et al. Transient flow analysis in reactor coolant pump systems du-ring flow coastdown period[J]. Nuclear engineering and design, 2011, 241:509-514.
[8] GROUDEV P, AANDREEVA M, PAVLVA M, et al. Investigation of main coolant pump trip problem in case of SB LOCA for Kozloduy Nuclear Power Plant WWER-440/V230[J]. Annals of nuclear energy, 2015, 76:137-145.
[9] 王秀礼,卢永刚,袁寿其,等. 基于流固耦合的核主泵汽蚀动力特性研究[J]. 哈尔滨工程大学学报, 2015, 36(2): 213-217.
WANG Xiuli, LU Yonggang, YUAN Shouqi, et al. Dynamic characteristics analysis of the reactor coolant pump variation based on fluid-structure coupling[J]. Journal of Harbin Engineering University, 2015, 36(2): 213-217.(in Chinese)
[10] 朱荣生, 郑宝义, 袁寿其, 等. 1 000 MW核主泵失水事故工况下气液两相流分析[J]. 原子能科学技术, 2012, 46(10): 1202-1206.
ZHU Rongsheng, ZHENG Baoyi, YUAN Shouqi, et al. 1 000 MW nuclear main pump gas-liquid two-phase flow analysis under loss of coolant accident[J]. Atomic energy science and technology, 2012, 46(10): 1202-1206.(in Chinese)
[11] LIU Jintao,LIU Shuhong,WU Yulin,et al. Numerical investigation of the hump characteristic of a pump turbine based on an improved cavitation model[J]. Computers & fluids,2012,68:105-111.
[12] GONCALVES E, PATELLA R F. Numerical study of cavitating flow with thermodynamic effect [J]. Journal of computers and fluids, 2010, 39: 99-113.
[13] 杨华, 孙丹丹, 汤方平, 等. 轴流泵非稳定工况下叶轮进口流场试验研究[J]. 排灌机械工程学报, 2011, 29(5): 407-410.
YANG Hua, SUN Dandan, TANG Fangping, et al. Experiment research on inlet flow field for axial-flow pump at unsteady operating condition[J]. Journal of drainage and irrigation machinery engineering, 2011, 29(5): 407-410.(in Chinese)
[14] ADRIAN S,ROMEO S R,LIVIU E A,et al. A new approach in numerical assessment of the cavitation beha-viour of centrifugal pumps[J]. International journal of fluid machinery and systems,2011, 4(1): 104-111.
[1] 肖丽倩, 黎义斌,, 刘宜,, 毕祯, 赵伟国,. 口环间隙对诱导轮离心泵空化流动和性能的影响[J]. 排灌机械工程学报, 2016, 34(8): 657-664.
[2] 燕浩, 柴立平, 李跃, 李强, 石海峡. 大型排水泵装置空化区间的数值计算[J]. 排灌机械工程学报, 2016, 34(8): 679-685.
[3] 龙新平,, 刘琦,, 阮晓峰,, 陈正文, 薛胜雄, 武子全. 后混式磨料射流喷嘴内部流场模拟及分析[J]. 排灌机械工程学报, 2016, 34(8): 686-692.
[4] 张金凤, 黄茜, 袁寿其, 冒杰云, 王业芳. 基于PIV的低比转数离心泵网格无关性[J]. 排灌机械工程学报, 2016, 34(7): 567-572.
[5] 冯晓东, 吴大转, 杨立峰, 贾允. CNP1000轴封式核主泵技术[J]. 排灌机械工程学报, 2016, 34(7): 553-560.
[6] 夏水晶, 袁建平, 孙潇, 周帮伦, 李彦军. 轴流泵叶片的参数化造型及多参数优化[J]. 排灌机械工程学报, 2016, 34(7): 603-607.
[7] 李仁年,, 毕祯, 黎义斌,, 肖丽倩. 诱导轮偏转角对离心泵叶轮空化性能的影响[J]. 排灌机械工程学报, 2016, 34(6): 461-469.
[8] 朱荣生, 陈宗良, 王秀礼, 曹梁. CAP1400核主泵空化特性数值研究[J]. 排灌机械工程学报, 2016, 34(6): 490-495.
[9] 李贵东, 王洋, 郑意, 马小虎, 梁龙一, 胡日新. 气液两相条件下离心泵内部流态及受力分析[J]. 排灌机械工程学报, 2016, 34(5): 369-374.
[10] 崔宝玲, 方晨, 葛明亚. 低比转数离心泵内部流动特性和外特性试验[J]. 排灌机械工程学报, 2016, 34(5): 375-380.
[11] 张前, 袁寿其, 刘俊萍, 鲍亚. 低压喷头喷嘴优化设计及内部流场数值模拟[J]. 排灌机械工程学报, 2016, 34(5): 449-454.
[12] 康灿, 李利婷, 鲁国辉. 导叶开度对贯流式水轮机性能及流动特征的影响[J]. 排灌机械工程学报, 2016, 34(5): 406-413.
[13] 侯向陶, 王鹏飞, 许忠斌, 阮晓东. 蒸汽发生器下封头对核主泵入口流场影响[J]. 排灌机械工程学报, 2016, 34(4): 277-282.
[14] 李彩虹, 薛志宽, 李红. 叶轮前盖板与泵体轴向间隙对轴向力的影响[J]. 排灌机械工程学报, 2016, 34(4): 295-300.
[15] 王宁, 黄彪, 吴钦, 王国玉. 绕水翼空化流动及振动特性的试验与数值模拟[J]. 排灌机械工程学报, 2016, 34(4): 321-327.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved