排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (3): 265-269    DOI: 10.3969/j.issn.1674-8530.15.0243
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于AVR单片机的全自动光伏水泵系统
施爱平1, 许冠杰2, 施健2
1.江苏大学农业装备工程学院, 江苏 镇江 212013; 2.江苏大学能源与动力工程学院, 江苏 镇江 212013
A fully automatic control photovoltaic pumping system based on AVR microcontroller
SHI Aiping1, XU Guanjie2, SHI Jian2
1.School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (2229 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为探究一种新型的自适应最大功率跟踪算法,提出了基于AVR单片机的光伏水泵系统控制结构.将遗传算法与占空比扰动观察法(P&O)相结合,根据遗传算法的原理计算推导出DC-AC变换器的占空比,可以实现快速搜索到光伏水泵系统的最大功率跟踪点,以克服外界环境的剧烈变化对控制器造成的干扰.通过Simulink环境下的仿真试验,验证了基于遗传算法实现的MPPT方法具有良好的自适应性以及稳定性.在光伏水泵系统的试验平台上进行相关的抽水试验,结果表明:建立于遗传算法进而实现MPPT算法而设计的系统,对于外界不断的气候变化,该光伏水泵系统都可以较好地应对,综合效率基本稳定在60%以上.所开发的系统可以实现对水泵负载的可靠控制,系统工作稳定,整体效率较高,为光伏水泵系统的优化控制提供了参考.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
施爱平
许冠杰
施健
关键词光伏水泵系统   AVR单片机   最大功率跟踪   遗传算法     
Abstract: In this paper, a control structure based on AVR microcontroller is proposed to explore a novel adaptive maximum power point tracking(MPPT)algorithm for photovoltaic(PV)pumping systems. DC-AC converter duty cycle is derived according to the principle of genetic algorithm and by combining the genetic algorithm and perturbation and the observation(P & O)method for duty cycle to search the maximum power point of the photovoltaic pumping system quickly and overcome interference on the controller caused by the dramatic changes in the external environment. The adaptability and stability of the MPPT method based on the genetic algorithm are validated in Simulink environment. Water pumping experiment is made on a test rig built for the designed photovoltaic pumping system to realize MPPT. It is shown that the system can respond the continuous change in climate exactly, causing a stable overall efficiency as good as 60%. There is a 10% improvement in comparison with the 50% efficiency of ordinary PV systems. Therefore, the developed system can provide a reliable control on the load of PV pump, but also its operation is sable with a higher overall efficiency. The work can provide a reference for optimal control of photovoltaic pumping systems. 
Key wordsPV pumping system   AVR microcontroller   MPPT   genetic algorithm   
收稿日期: 2015-05-12;
基金资助:江苏省2014年度普通高校研究生实践创新计划项目(SJZZ_0134)
通讯作者: 许冠杰(1991—),男,甘肃武威人,硕士研究生(1329389523@qq.com),主要从事新能源以及光伏设备研究.   
作者简介: 施爱平(1968—),男,浙江平湖人,教授,硕士生导师(shap@ujs.edu.cn),主要从事新能源开发与利用研究.
引用本文:   
施爱平,许冠杰,施健. 基于AVR单片机的全自动光伏水泵系统[J]. 排灌机械工程学报, 2016, 34(3): 265-269.
SHI Ai-Ping-,XU Guan-Jie-,SHI Jian-. A fully automatic control photovoltaic pumping system based on AVR microcontroller[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(3): 265-269.
 
[1] ZHAO R, SHI G,CHEN H,et al.Present status and prospects of photovoltaic market in China[J].Energy policy,2011,39(4):2204-2207.
[2] HOSENUZZAMAN M, RAHIM N A, SELVARAJ J, et al. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation[J]. Renewable & sustainable energy reviews, 2015, 41:284-297.
[3] ZIPP A. Revenue prospects of photovoltaic in Germany——Influence opportunities by variation of the plant orientation[J]. Energy policy, 2015, 81(6):86-97.
[4] SICHILALU S, MATHABA T, XIA X. Optimal control of a wind—PV-hybrid powered heat pump water heater[J]. Applied energy, 2015,11:12-16.
[5] CORRÂT P, SELEME S I, SILVA S R. Efficiency optimization in stand-alone photovoltaic pumping system [J]. Renewable energy, 2012, 41(2):220-226.
[6] BETKA A, ATTALI A. Optimization of a photovoltaic pumping system based on the optimal control theory[J]. Solar energy, 2010, 84(7):1273-1283.
[7] RAHRAH K, REKIOUA D, REKIOUA T, et al. Photovoltaic pumping system in Bejaia climate with battery storage[J]. International journal of hydrogen energy, 2015, 40(39):13665-13675.
[8] SEMAOUI S, ARAB A H, BACHA S, et al. Optimal sizing of a stand-alone photovoltaic system with energy management in isolated areas[J]. Energy procedia, 2013, 36:358-368.
[9] 施爱平,施允洋,施健,等.基于PIC16F877A单片机的光伏水泵系统设计[J].现代科学仪器,2013(1):83-86.
[10] SHI Aiping, SHI Yunyang,SHI Jian,et al.Design of photovoltaic pumping system based on PIC16F877A micro-controller[J].Modern scientific instruments,2013(1):83-86.(in Chinese)
[11] 刘国海,刘云龙,李俊杰,等.基于三电平NPC技术的SVG控制方法及其系统实现[J].江苏大学学报(自然科学版),2015,36(4):439-444.
LIU Guohai, LIU Yunlong, LI Junjie,et al. Control strategy and implementation of SVG based on three-level NPC inverter[J].Journal of Jiangsu University(natural science edition),2015,36(4):439-444.(in Chinese)
[12] 蔡纪鹤,孙玉坤,黄永红.基于占空比干扰观测法的MPPT控制[J].江苏大学学报(自然科学版),2014,35(1):75-79.
CAI Jihe,SUN Yukun,HUANG Yonghong.MPPT based on duty cycle perturbation and observation method[J].Journal of Jiangsu University(natural science edition),2014,35(1):75-79.(in Chinese)
[13] 谈明高,丁荣,刘厚林,等. 光伏水泵系统出水量预测与试验研究[J].流体机械,2014, 42(6):6-10.
[14] TAN Minggao,DING Rong,LIU Houlin,et al. Discharge prediction of photovoltaic pumping system and experimental research[J].Fluid machinery,2014,42(6):
[15]   6-10.(in Chinese)
[16] 彭志辉,和军平,马光,等.光伏发电系统MPPT输出功率采样周期的优化设计[J].中国电动机工程学报,2012,32(34):24-29.
PENG Zhihui,HE Junping,MA Guang,et al.Sampling period optimization design of output power of photovoltaic power generation MPPT systems[J]. Proceedings of the CSEE,2012,32(34):24-29.(in Chinese)
[17] 刘晓艳,祁新梅,郑寿森,等.局部阴影条件下光伏阵列仿真模型的研究[J].系统仿真学报,2012,24(5):1125-1131.
LIU Xiaoyan,QI Xinmei,ZHENG Shousen,et al.Study on simulation model of PV array under partially shading[J].Journal of system simulation,2012,24(5):1125-1131.(in Chinese)
[18] 马煜坤,韩肖清,李腾飞.局部阴影下光伏阵列的Matlab仿真模型与特性分析[J].中北大学学报(自然科学报),2015,36(3):359-365.
MA Yukun,HAN Xiaoqing,LI Tengfei. Matlab simulation model and output characteristics of PV array under partial shading[J].Journal of North University of China(natural science edition),2015,36(3):359-365.(in Chinese)
[19] 杨东欣,刘艳舫,赵磊,等.基于光伏阵列数学模型的Matlab仿真[J].硅谷,2012(18):6-9.
[20] YANG Dongxin,LIU Yanfang,ZHAO Lei,et al. Simulation model of PV array based on Matlab[J].Valley,2012(18):6-9.(in Chinese)
[1] 曹睿哲,, 田浪,, 郭蓉,, 肖俊龙,. 投影寻踪法在泵站建筑物安全评价中的应用[J]. 排灌机械工程学报, 2016, 34(2): 134-138.
[2] 赵进, 邱志鹏, 彭涛, 汤跃. 基于行星齿轮的卷盘喷灌机传动设计与优化[J]. 排灌机械工程学报, 2015, 33(8): 724-730.
[3] 杨建军, 高淑, 李庆堂. 多源环状注水系统泵站运行方案与管网同步优化[J]. 排灌机械工程学报, 2015, 33(7): 594-598.
[4] 钟丽平,, 祁力钧,, 冀荣华, 袁雪, 梅银成, 高春花. 基于RSM和GA的温室风送式弥雾机喷雾效果优化分析[J]. 排灌机械工程学报, 2014, 32(9): 788-794.
[5] 李冲,, 郑源,, 陆云, 朱大胜, 宋晨光. 独立风-光-蓄混合发电系统的建模与优化[J]. 排灌机械工程学报, 2014, 32(1): 60-65.
[6] 陈红勋, 霍聪聪, 刘文梅. 基于CFD的分段翼型控制研究[J]. 排灌机械工程学报, 2012, 30(5): 513-516.
[7] 杨建军, 战红, 丁玉成. 考虑配置的多源注水系统泵站运行方案优化[J]. 排灌机械工程学报, 2012, 30(4): 442-446.
[8] 刘洪, 彭增雄, 荆崇波. 轴向柱塞泵滑靴油膜形状的遗传算法数值分析[J]. 排灌机械工程学报, 2012, 30(1): 75-79.
[9] 冯晓莉, 仇宝云, 杨兴丽, 申 剑, 裴 蓓. 大型泵站运行优化方法及其应用[J]. 排灌机械工程学报, 2011, 29(2): 127-132.
[10] 张 蕾, 魏 龙, 冯 飞, 涂中强, 徐治皋. 基于能量价值理论的电站循泵优化及系统开发[J]. 排灌机械工程学报, 2011, 29(2): 144-148.
[11] 郭 涛, 李国君, 田 辉, 孙秀玲. 基于遗传算法的离心泵叶轮参数化造型及优化设计[J]. 排灌机械工程学报, 2010, 28(5): 384-388.
[12] 陶海坤, 谭 磊, 曹树良. 遗传算法的改进及其在流体机械领域的应用[J]. 排灌机械工程学报, 2010, 28(5): 428-433.
[13] 杨建军, 战 红, 丁玉成. 基于圈的单水源树状管网优化改进遗传算法[J]. 排灌机械工程学报, 2010, 28(2): 164-168.
[14] 何希杰,;朱广奇,;劳学苏. 遗传算法在离心泵优化设计中的应用[J]. 排灌机械工程学报, 2008, 26(2): 40-44.
[15] 闫永强;梁武科. 遗传算法在离心泵叶片优化设计中的应用[J]. 排灌机械工程学报, 2004, 22(2): 5-7.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved