排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (3): 198-203    DOI: 10.3969/j.issn.1674-8530.15.0091
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
离心泵流动空化噪声测试
卿彪1,2, 余波2, 兰崴3, 胡锦蘅2
1.国网四川省电力公司映秀湾水力发电总厂, 四川 成都 611830; 2.西华大学能源与动力工程学院, 四川 成都 610039; 3.国网重庆市电力公司, 重庆 401120
Measurement of cavitation noise in centrifugal pump
QING Biao1,2, YU Bo2, LAN Wei3, HU Jinheng2
1.Yingxiuwan Hydropower Plant, State Grid Sichuan Province Electric Power Company, Chengdu, Sichuan 611830, China; 2.School of Energy and Power Engineering, Xihua University, Chengdu, Sichuan 610039, China; 3.State Grid Chongqing Electric Power Company, Chongqing, 401120, China
 全文: PDF (3126 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 选择3个流量工况(80, 92,100 m3/h)对离心泵进行空化试验,利用TST6200动态采集系统、NoiseA 2.10噪声测试软件和灵敏度为-210 dB的水听器构成的噪声测试系统采集空化噪声信号,并利用照相机同时拍摄3个流量工况下水流中空泡的变化过程.采用功率谱法对空化噪声信号进行频域分析和处理,将整个频域分为高中低3个频段,统计各频段信号的平均功率,得到信号功率随汽蚀余量之间的关系曲线.研究结果表明:离心泵流动空化信号的特征主要集中在低频段,而在中高频段没有明显特征;利用功率谱法对空化噪声信号进行分析和处理,得到的结果能够很好地反映离心泵流动空化的发展过程;选择了2个功率带分别作为判断离心泵空化初生和临界空化时的阈值,利用该阈值可以对离心泵空化进行实时监测.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
卿彪
余波
兰崴
胡锦蘅
关键词离心泵   空化   空化噪声信号   功率谱分析   阈值     
Abstract: Cavitation experiments are carried out to tackle cavitation problem a centrifugal pump in the paper by making use of TST6200 dynamic acquisition system, NoiseA2.10 noise test software and a hydrophone with -210 dB sensitivity under three flow conditions(80, 92, 100 m3/h). At the same time, the variation histories of vapour cavity in the stream are recorded by using a camera under these flow conditions. The recorded cavitation noise signals are analysed in frequency domain by adopting power spectrum method. The averaged powers of signal in three frequency bands are determined and the relationships between the signal powers and the net positive suction head available are obtained. It is shown that the characteristics of cavitation signal in the centrifugal pump are mainly involved in the low frequency band, but not obviously demonstrated in the medium and high frequency bands. The results in the frequency domain can reflect the development of cavitation in the pump. The specified powers in the two bands can be used as the thresholds respectively for cavitation inception and critical cavitation. By means of them, the cavitation in a centrifugal pump can be monitored in real time.
Key wordscentrifugal pump   cavitation   cavitation noise signal   power spectrum analysis   threshold   
收稿日期: 2015-04-27;
基金资助:流体及动力机械(西华大学)教育部重点实验室基金资助项目(szjj2012-042)
通讯作者: 余波(1965—),男,四川西昌人,教授(13540775088@163.com),主要从事流体机械及工程系统测试、控制研究.   
作者简介: 卿彪(1988—),男,四川广安人,硕士研究生(qingbiao881112@163.com),主要从事动力工程系统优化技术研究.
引用本文:   
卿彪,,余波等. 离心泵流动空化噪声测试[J]. 排灌机械工程学报, 2016, 34(3): 198-203.
QING Biao-,,YU Bo- et al. Measurement of cavitation noise in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(3): 198-203.
 
[1] CUDINA M.Noise as an indicator of cavitation and instability in centrifugal pumps[J].J Mech Eng-Ljiubljana 1999,45(4):46-134.
[2] 丁成伟. 离心泵与轴流泵:原理及水力设计[M].北京:机械工业出版社,1981.
[3] 关醒凡.现代泵理论与设计[M]. 北京. 中国宇航出版社,2011.
[4] 杨敏官,孙鑫恺,高波,等.离心泵内部非定常空化流动特征的数值分析[J].江苏大学学报(自然科学版),2012,33(4):408-413.
YANG Minguan,SUN Xinkai,GAO Bo, et al. Centrifugal pump internal unsteady numerical analysis of cavita-ting flow characteristics[J]. Journal of Jiangsu University(natural science edition), 2012,33(4):408-413.(in Chinese)
[5] 刘厚林,刘东喜,王勇,等.三种空化模型在离心泵空化流计算中的应用评价[J].农业工程学报,2012,28(16):54-59.
LIU Houlin,LIU Dongxi,WANG Yong,et al. Three kinds of flow cavitation model evaluation in the calculation of centrifugal pump cavitation[J]. Tyansactions of the CSAE,2012,28(16):54-59.(in Chinese)
[6] ZHANG Dong, LIU Zhiping, JIN Tailai. Cavitation inception witnessed sound pressure level both in model test and proto-type observation[C]//Proceedings of the fourth international symposium on cavitation, 2011.
[7] 赵越,刘智良,郭全宝. 确定模型水泵水轮机水泵工况叶片初生空化的声学方法研究[J].大电机技术,2011(1):39-45.
[8] ZHAO Yue,LIU Zhiliang, GUO Quanbao. Study on the acoustic method of determining the incipient cavitation of the model pump turbine pump[J]. Large motor techno-logy,2011(1):39-45.(in Chinese)
[9] MIRKO Cudina, JURIJ Prezelj. Detection of cavitation in operation of kinetic pumps use of discrete frequency tone in audible spectra[J].Applied acoustics,2008,70:540-546.
[10] 王佳俊,潘罗平,曹树良,等.小波变换应用于水轮机空化信号检测[J].水力发电学报,2013,32(4):215-220.
WANG Jiajun,PAN Luoping,CAO Shuliang, et al. The application of wavelet transform in signal detection of hydraulic turbine cavitation[J]. Journal of hydroelectric power,2013,32(4):215-220.(in Chinese)
[11] 蒲中奇,张伟,施克仁,等. 水轮机空化的小波奇异性检测研究[J].中国电机工程学报,2005,25(8):105-109.
PU Zhongqi,ZHANG Wei,SHI Keren, et al. Study on wavelet singularity detection of hydraulic turbine cavitation[J]. Chinese journal of electrical engineering,2005,25(8):105-109.(in Chinese)
[12] 苏永生,王永生,段向阳. 离心泵空化试验研究[J]. 农业机械学报,2010,41(3):77-80.
SU Yongsheng,WANG Yongsheng,DUAN Xiangyang. Experimental study on cavitation of centrifugal pump[J]. Transactions of the CSAM,2010,41(3):77-80.(in Chinese)
[13] 张贤达. 现代信号处理[M]. 北京:清华大学出版社,2002.
[14] 王福杰,潘宏侠. MATLAB中几种功率谱估计函数的比较分析与选择[J].计算机科学与技术,2009,27(6):28-31.
WANG Fujie,PAN Hongxia.Comparative analysis and selection of several power spectrum estimation functions in MATLAB[J]. Computer science and technology, 2009,27(6):28-31.(in Chinese)
[15] HUANG Zhiyu,LIU Baohua,CHEN Gaoping, et al. Power spectrum estimation of random signals and implementation of Matlab[J]. Modern electronic technology, 2002,(3):21-23.(in Chinese)
[16] 王凤瑛,张丽丽. 功率谱估计及其 MATLAB 仿真[J]. 微计算机信息,2006,31(22):287-289.
WANG Fengying,ZHANG Lili. Power spectrum estimation and MATLAB simulation[J]. Micro computer information,2006,31(22):287-289.(in Chinese)
[17] 傅广操,樊明捷. MATLAB在现代功率谱估计中的应用[J].电脑学习,2003(6):6-8.
[18] FU Guangcao,FAN Mingjie. Application of MATLAB in modern power spectrum estimation[J]. Computer lear-ning, 2003(6):6-8.(in Chinese)
[1] 郭豹, 刘厚林, 谈明高, 丁荣, 王凯. 导叶周向安装位置对离心泵叶轮径向力的影响[J]. 排灌机械工程学报, 2016, 34(3): 204-209.
[2] 王伟, 施卫东, 蒋小平, 冯琦, 陆伟刚, 张德胜,. 基于正交试验及CFD的多级离心泵叶轮优化设计[J]. 排灌机械工程学报, 2016, 34(3): 191-197.
[3] 洪锋,, 袁建平, 周帮伦. 余热排出泵叶轮内空化流动特性的数值分析[J]. 排灌机械工程学报, 2016, 34(3): 185-190.
[4] 王洋, 谢山峰, 王维军. 开缝叶片低比转数离心泵空化性能的数值模拟[J]. 排灌机械工程学报, 2016, 34(3): 210-215.
[5] 孙慧, 袁寿其, 骆寅, 郭义航. 水机电共同作用的离心泵内部非定常流动分析[J]. 排灌机械工程学报, 2016, 34(2): 122-127.
[6] 马新华, 冯琦, 蒋小平, 王伟, 何勇冠. 多级离心泵内部非定常压力脉动的数值模拟[J]. 排灌机械工程学报, 2016, 34(1): 26-31.
[7] 李跃, 施卫东, 韩笑笑. 不同结构形式对串并联离心泵振动特性的影响[J]. 排灌机械工程学报, 2015, 33(9): 744-749.
[8] 杨从新, 富友, 强盼, 刘洋. 不同压出室下叶轮切割对离心泵性能影响[J]. 排灌机械工程学报, 2015, 33(9): 750-755.
[9] 张人会,, 郭荣, 杨军虎,, 李仁年,. 基于CFD的空间导叶内部流场分析及优化设计[J]. 排灌机械工程学报, 2015, 33(9): 762-767.
[10] 杨兴标, 李红, 陈超. 湍流模型对离心泵扬程预测准确性的影响[J]. 排灌机械工程学报, 2015, 33(8): 656-660.
[11] 刘瑞华, 李贵东, 王洋. 气液两相下离心泵内部流动数值模拟[J]. 排灌机械工程学报, 2015, 33(8): 661-666.
[12] 康灿, 杨鑫, 于晓杰. 多级离心泵内部级间影响及压力脉动特征[J]. 排灌机械工程学报, 2015, 33(7): 566-571.
[13] 王春林, 曾成, 杨晓勇, 彭海菠, 刘栋. 双吸泵正反转内部流场数值模拟及性能预测[J]. 排灌机械工程学报, 2015, 33(7): 577-582.
[14] 骆寅, 孙慧, 卢加兴, 袁寿其. 无传感器监测技术在离心泵中的应用研究综述[J]. 排灌机械工程学报, 2015, 33(6): 547-552.
[15] 韩伟, 金毅, 李仁年, 岳婷, 权辉. 颗粒对离心泵内部压力脉动特性的影响[J]. 排灌机械工程学报, 2015, 33(6): 467-474.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved