排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (1): 9-17    DOI: 10.3969/j.issn.1674-8530.15.0182
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
汽车发动机冷却水泵的研究进展
李维强, 李伟, 施卫东, 季磊磊, 赵晓凡
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
A review of engine cooling water pump
LI Weiqiang, LI Wei, SHI Weidong, JI Leilei, ZHAO Xiaofan
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (1606 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 冷却系统对汽车发动机性能具有重要的影响,发动机冷却水泵已成为国内外的研究热点.分析了离心式发动机冷却水泵的结构特点与能量特性,总结了制约汽车发动机冷却水泵发展的关键影响因素.由于发动机冷却水泵的空间结构受限、工作环境温度高、转速变化大,工作过程极易发生汽蚀破坏,严重影响发动机冷却水泵及冷却系统的可靠及稳定运行,易出现轴承损坏、水封失效、振动噪声等问题.从发动机冷却水泵水力性能、汽蚀性能以及可靠性等3个方面综述了近年来国内外研究取得的相关成果,对发动机冷却水泵技术研究的发展和趋势进行了展望,提出未来需要进一步深入研究的内容和方向:基于PIV技术研究发动机冷却水泵内部流动规律,建立泵内流特征和外特性之间的关系;掌握发动机冷却水泵热力学效应下的汽蚀机理,探讨汽蚀诱导压力脉动的危害,进一步提高发动机冷却水泵的性能和可靠性;注重发动机冷却水泵零部件的标准化、模块化和系列化开发,构建“互联网+汽车水泵标准件”的发展模式,实现发动机冷却水泵智能、可控、高效运行.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李维强
李伟
施卫东
季磊磊
赵晓凡
关键词汽车发动机   冷却水泵   汽蚀   可靠性   数值计算     
Abstract: Cooling system has an important influence on automobile engine performance, and engine cooling water pump(ECWP)in the system has been a research focus at home and abroad. Structural characteristics and hydraulic performances of centrifugal ECWP are analyzed, and the key factors affecting the development of ECWP are also summarized. Cavitation in the ECWP occurs easier under the high working temperature, the limited seriously space structure and the changed severely rotating speed, which seriously affects the cooling system's stability and reliability and brings into a series of problems such as bearing damage, seal failure, shaft fatigue fracture and noise. In this study, achievements on hydraulic, cavitation performances and reliability of ECWP are reviewed, and the development tendency and research focuses in the future are put forward. Firstly, a connection between internal flow feature and hydrodynamic performance needs to be established based on the particle image velocimetry(PIV)technology. Secondly, cavitation mechanism of ECWP with thermodynamic effect needs to be understood and the disadvantage of pressure pulsation caused by cavitation needs to be clarified to improve hydrodynamic performance and reliability. At last, standardization, modularization and serialization of ECWP components should be paid attention, and a development model called "Internet plus Automobile Standard Parts" should be constructed to make ECWP intelligent, controllable and efficient.
Key wordsautomobile engine   cooling water pump   cavitation   reliability   numerical simulation   
收稿日期: 2015-08-17;
基金资助:

国家自然科学基金资助项目(51409127);江苏省“六大人才高峰”项目(HYZB-002);江苏大学高级专业人才科研启动基金资助项目(13JDG105)

通讯作者: 李伟(1979—),男,河南信阳人,副研究员,博士(通信作者,lwjiangda@ujs.edu.cn),主要从事流体机械及工程研究.   
作者简介: 李维强(1990—),男,江苏南京人,硕士研究生(2211311011@ujs.edu.cn),主要从事流体机械内部汽蚀机理研究.
引用本文:   
李维强,李伟,施卫东等. 汽车发动机冷却水泵的研究进展[J]. 排灌机械工程学报, 2016, 34(1): 9-17.
LI Wei-Qiang,LI Wei,SHI Wei-Dong et al. A review of engine cooling water pump[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(1): 9-17.
 
[1] 翁祖亮.冷却水泵实用技术[M]. 上海:上海交通大学出版社,2004.
[2] 刘静. 汽车水泵的全三维数值模拟及性能预测研究[D]. 上海:上海交通大学, 2013.
[3] 吴杰,唐倩,张元勋,等.基于CFD的汽车冷却系统水泵叶轮设计与实验[J].机械研究与应用,2013,26(2):89-91.
WU Jie, TANG Qian, ZHANG Yuanxun, et al. Impeller design and experiment for automobile water pump based on CFD [J]. Mechanical research & application, 2013, 26(2):89-91.(in Chinese)
[4] 王瑞杰. 内燃机的冷却水泵的汽蚀工况分析和提高汽蚀性能设计方法的探讨[J]. 淮海工学院学报(自然科学版),1996,5(1):19-23.
[5] WANG Ruijie. Discussion on the working condition of cavitation and improvement of design of the cooling water pump in internet combustion engine[J]. Journal of Huaihai Institute of Technology(natural science),1995,5(1):19-23.(in Chinese)
[6] 廖乃坚,谢代标. 关于LJ465Q系列发动机水泵气蚀的探讨[J]. 装备制造技术,2010(2):177-179.
[7] LIAO Naijian, XIE Daibiao. Discussion on the pump cavitation in LJ465Q series engine[J]. Equipment manufacturing technology, 2010(2):177-179.(in Chinese)
[8] 裴冰. 汽车水泵汽蚀性能优化设计及压力脉动研究[D]. 镇江:江苏大学, 2013.
[9] 张金凤,冒杰云,袁寿其,等.变转速工况下汽车冷却水泵内外特性变化规律[J]. 流体机械,2014,42(8):1-6.
ZHANG Jinfeng, MAO Jieyun, YUAN Shouqi, et al. Effect of rotation speed on the inner flow and performa-nce characteristics for an automobile cooling pump [J]. Fluid machinery, 2014, 42(8):1-6.(in Chinese)
[10] 韦李娜,王燕飞,沈栋平,等. 基于CFD的汽车离心水泵性能分析[J].长春理工大学学报(自然科学版),2014,37(5):83-86.
WEI Lina, WANG Yanfei, SHEN Dongping, et al. Performance analysis of automobile centrifugal pump using CFD[J]. Journal of Changchun University of Science and Technology(natural science edition), 2014,37(5):83-86.(in Chinese)
[11] 周卫华. 高效率发动机冷却水泵的设计研究[D]. 北京:清华大学, 2013.
[12] 刘婷婷,王彤,杨波,等. 汽车水泵性能三维数值模拟及结构改进[J]. 工程热物理学报,2009,30(6): 61-63.
LIU Tingting, WANG Tong, YANG Bo, et al. Numerical simulation and structure improvement for a car pump with opened centrifugal impeller[J]. Journal of engineering thermophysics, 2009, 30(6): 61-63.(in Chinese)
[13] 李华. 基于水力损失模型的发动机冷却水泵性能预测的研究[D]. 上海:上海交通大学, 2012.
[14] 钟绍俊,黄镇海,黄艳岩.汽车发动机冷却水泵性能测试系统设计[J].中国计量学院学报,2006, 17(3):196-198.
ZHONG Shaojun, HUANG Zhenghai, HUANG Yanyan. Design of test-control systems for cooling water pumps of automobile engines[J].Journal of China Jiliang University, 2006, 17(3):196-198.(in Chinese)
[15] 陈次昌,王德军,李秀武,等.发动机冷却水泵及试验装置的研究[J].农业机械学报,1999, 30(2):81-83.
CHEN Cichang, WANG Dechang, Li Xiuwu, et al. A study on cooling pump for an engine and its testing apparatus [J]. Transactions of the Chinese society for agricultural machinery, 1999,30(2):81-83.(in Chinese)
[16] 施卫东,裴冰,陆伟刚,等. 基于CFD的发动机冷却水泵优化设计[J]. 排灌机械工程学报, 2013,31(1):15-19 浏览
SHI Weidong, PEI Bing, LU Weigang, et al. Optimization of automobile pump based on CFD [J]. Journal of drainage and irrigation machinery engineering, 2013, 31(1):15-19.(in Chinese)
[17] 刘小平,郭兰,顾维东. CFD的水泵数值分析[J]. 汽车工程师, 2010(4):21-24.
[18] LIU Xiaoping, GUO Lan, GU Weidong. Numerical simulation of water pump based on CFD [J].Auto engineer, 2010(4):21-24.(in Chinese)
[19] OSMAN K A,HIGGINSON A M,Moore John.Improving the efficiency of vehicle water-pump designs using genetic algorithms[J]. Intelligent engineering systems through artificial neural networks, 1998,8:291-296.
[20] 袁寿其, 张婷婷, 张金风, 等. 汽车冷却水泵优化设计及试验研究[J].排灌机械工程学报,2014,32(2):93-97. 浏览
YUAN Shouqi, ZHANG Tingting, ZHANG Jinfeng, et al. Optimization design and test study on automobile cooling pumps[J]. Journal of drainage and irrigation machinery engineering, 2014,32(2):93-97.(in Chinese)
[21] ZHAO B, HOU D, CHEN H, et al. Optimization design of a double-channel pump by means of orthogonal test, CFD, and experimental analysis[J]. Advances in mechanical engineering, 2014, 6: 545216.
[22] 唐琦,黄克菲,朱棣. 水冷摩托车发动机水泵汽蚀现象及改进设计[J]. 小型内燃机与摩托车, 2004(1):24-26.
[23] TANG Qi, HUANG Kefei, ZHU Di. Cavitation and improvement design of the water pump in motorcycle engine of cooling water [J]. Small internal combustion engine, 2004(1):24-26.(in Chinese)
[24] HONG Lili,YANG Xuxiang,LIU Yanfang,et a1.HHT fuzzy wavelet neural network to identify incipient cavitation in cooling pump of engine[J].Journal of computers, 2011,6(3):506-513.
[25] 李伟,施卫东,张华,等. 基于CFD的发动机冷却水泵汽蚀性能预测[J]. 排灌机械工程学报, 2012,30(2): 76-80.
LI Wei, SHI Weidong, ZHANG Hua, et al. Cavitation performance prediction of engine cooling water pump based on CFD[J]. Journal of drainage and irrigation machinery engineering, 2012, 30(2): 76-80.(in Chinese)
[26] 李伟,施卫东,裴冰,等. 发动机冷却水泵空化特性的数值模拟与改进[J]. 内燃机学报, 2013,31(2): 65-70.
LI Wei, SHI Weidong, PEI Bing, et al. Numerical simulation and improvement on cavitation performance of engine cooling water pump [J]. Transactions of CSICE, 2013, 31(2): 65-70.(in Chinese)
[27] 薛党勤.汽车冷却水泵优化设计及汽蚀振动特性研究[D]. 北京:中国农业大学, 2015.
[28] 张俊杰,施卫东,张德胜,等.汽车冷却水泵高速运行时密封件损伤数值模拟与优化[J].排灌机械工程学报,2015,33(7):606-610. 浏览
ZHANG Junjie, SHI Weidong, ZHANG Desheng, et al. Numerical simulation and optimization of automotive water pump to eliminate shaft seal failure in high speed operation[J]. Journal of drainage and irrigation machinery engineering, 2015,33(7):606-610.(in Chinese)
[29] 李兴林,王成焘,曹茂来,等. 汽车水泵轴连轴承密封性能试验分析[J]. 轴承,2000(6):33-35.
[30] LI Xinglin, WANG Chengtao, CAO Maolai, et al. Tests and analysis of automotive water pump bearing seal performance [J]. Bearing, 2000(6):33-35.(in Chinese)
[31] 陈建飞,杨波. 多种载荷作用下发动机冷却水泵叶轮的强度分析[J]. 流体机械,2012,40(5):14-20.
CHEN Jianfei, YANG Bo. Strength analysis of impeller in automobile water pump under the combined loads [J].Fluid machinery, 2012, 40(5):14-20.(in Chinese)
[32] 冯长虹,周先辉,赵卫东,等. 汽车水泵噪声特性与评价[J]. 噪声与振动控制,2014,40(1):118-122.
FENG Changhong, ZHOU Xianhui, ZHAO Weidong, et al. Evaluation of noise performance of automobiles water pumps[J]. Noise and vibration control, 2014,40(1):118-122.(in Chinese)
[33] 孔维峰,李凌均,李朋勇,等. 汽车水泵总成的动态特性研究[J]. 机械强度,2011,33(5):767-770.
KONG Weifeng, LI Lingjun, LI Pengyong, et al. Dynamic characteristics of automobile pump assembly[J].Journal of mechanical strength, 2011, 33(5):767-770.(in Chinese)
[34] 段莉萍,元涛,陈耘,等. 某柴油发动机水泵总成失效分析[J]. 兵器材料科学与工程,2008,31(1):71-74.
DUAN Liping, YUAN Tao, CHEN Yun, et al. Failure analysis of water pump assembly of a certain diesel engine[J].Ordnance material science and engineering, 2008, 31(1):71-74.(in Chinese)
[35] 胡美玲,魏道高,马倩. 含轴裂纹发动机冷却水泵转子系统动力学特性分析[J]. 农业装备与车辆工程,2013,51(7):1-5.
HU Meiling, WEI Daogao, MA Qian. Analysis on dynamic characteristics of the water pump rotor system of automobile with a cracked shaft [J]. Agricultural equipment & vehicle engineering, 2013, 51(7):1-5.(in Chinese)
[36] 周琼,李正美,唐建平,等. 发动机冷却水泵轴承密封圈接触应力有限元分析[J]. 轴承,2011(1):4-7.
[37] ZHOU Qiong, LI Zhengmei, TANG Jianping, et al. Finite element analysis of contact stress of automotive water pump bearing′s seal[J]. Bearing, 2011(1):4-7.(in Chinese)
[38] 李正美,周琼,安琦,等. 不平衡量对发动机冷却水泵轴承载荷及寿命的影响[J]. 华东理工大学学报(自然科学版),2010,36(4): 96-102.
LI Zhengmei, ZHOU Qiong, AN Qi, et al. Influences of eccentric unbalances on load and life of auto water pump bearing [J].Journal of East China University of Science and Technology(natural science edition), 2010, 36(4): 96-102.(in Chinese)
[39] 李正美. 汽车水泵轴承动力学性能、热学性能与疲劳寿命计算方法研究[D]. 上海:华东理工大学,2013.
[40] 孙国栋,朱淑玲,刘爱辉. 汽车水泵轴承窜动分析及应对措施[J]. 现代零部件,2013(6):74-76.
[41]   SUN Guodong, ZHU Shuling, LIU Aihui. Bearing movement analysis and countermeasures in an engine cooling water pump[J]. Auto manufacturing engineer. 2013(6):74-76.(in Chinese)
[42] 张志军,陈再良,佟晓辉. GCr15钢发动机冷却水泵芯轴早期失效分析[J]. 金属热处理, 2003,28(6):57-59.
ZHANG Zhijun, CHEN Zailiang, TONG Xiaohui. Early failure analysis of GCr15 steel axis of automobile pump [J]. Heat treatment of metals, 2003, 28(6):57-59.(in Chinese)
[43] 曹占龙,李宏燕,任柏林. 汽车水泵故障分析及改进[J]. 湖北汽车工业学院学报, 2013,27(3):65-68.
CAO Zhanlong, LI Hongyan, REN Bolin. Failure analysis and improvement for automotive water pump [J].Journal of Hubei University of Automotive Technology, 2013, 27(3):65-68.
[44] WANG X, LIANG X, HHAO Z, et al. Comparison of electrical and mechanical water pump performance in internal combustion engine[J]. International journal of vehicle systems modelling and testing, 2015,10(3):205-223.
[45] CORTONA E, ONDER C. Engine thermal management with electric cooling pump[J]. SAE paper, 2000, doi: 10.4271/2000-01-0965.
[46] HOON Cho, DOHOY Jung, ZORAN S Filipi, et al. Application of controllable electric coolant pump for fuel economy and cooling performance improvement[C]//Proceedings of the IMECE, 2004:261056.
[47] JAWAD B, ZELLNER K, RIEDEL C. Small engine cooling and the electric water pump[J]. SAE paper, 2004-32-0084.
[1] 张俊杰, 施卫东, 张德胜, 张琳. 汽车冷却水泵高速运行时密封件损伤数值模拟与优化[J]. 排灌机械工程学报, 2015, 33(7): 606-610.
[2] 朱方能, 刘栋, 晁长青, 张鹏, 严建华. 外圆柱沟槽对环隙内波动涡流的影响[J]. 排灌机械工程学报, 2015, 33(6): 516-520.
[3] 周君亮. 低扬程泵装置原、模型和“有害”汽蚀参数换算[J]. 排灌机械工程学报, 2015, 33(3): 185-195.
[4] 王洋, 印刚, 王维军, 李贵东, 崔宇蕊. 低比转数恒扬程泵内部流场数值模拟[J]. 排灌机械工程学报, 2015, 33(1): 10-15.
[5] 曹卫东, 刘光辉, 刘冰. 两级离心泵径向导叶水力优化[J]. 排灌机械工程学报, 2014, 32(8): 663-668.
[6] 张华, 施卫东, 陈斌, 张德胜, 邵佩佩. 轴流泵叶轮进口流场PIV试验与数值计算[J]. 排灌机械工程学报, 2014, 32(6): 461-465.
[7] 李斌兵, 黄磊. 黄土沟壑区坡面入渗-产流方程推导及数值解法[J]. 排灌机械工程学报, 2014, 32(6): 535-540.
[8] 李红, 刘振超, 汤攀, 王超. SR100垂直摇臂式喷头摇臂有限元分析[J]. 排灌机械工程学报, 2014, 32(5): 429-434.
[9] 袁寿其, 张婷婷, 张金风, 刘建瑞, 裴冰. 汽车冷却水泵优化设计及试验研究[J]. 排灌机械工程学报, 2014, 32(2): 93-97.
[10] 李永鹏, 陈晖, 王文廷, 杜玉洁. 多工况高抗汽蚀性能的诱导轮设计[J]. 排灌机械工程学报, 2014, 32(11): 948-954.
[11] 田晓庆, 郑源, 潘华辰, 孙斌. 涡流发生器对试验尾水管性能改善作用分析[J]. 排灌机械工程学报, 2013, 31(9): 783-787.
[12] 施卫东, 王国涛, 张德胜, 蒋小平, 徐燕. 基于流固耦合的轴流泵叶片应力特性[J]. 排灌机械工程学报, 2013, 31(9): 737-740.
[13] 施卫东, 高雄发, 张德胜, 陆伟刚, 张启华, 张霄. 叶轮口环间隙对井用潜水泵性能的影响[J]. 排灌机械工程学报, 2013, 31(8): 651-655.
[14] 刘建瑞, 高振军, 郭晨旭, 何小可, 文海罡. 50IB-32型离心泵汽蚀性能的数值模拟与试验[J]. 排灌机械工程学报, 2013, 31(6): 475-478.
[15] 唐学林, 黄微, 王福军, 吴玉林, 刘竹青. 灯泡式贯流泵空化流的数值研究和性能预测[J]. 排灌机械工程学报, 2013, 31(3): 185-189.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved