排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2016, Vol. 34 Issue (1): 1-8    DOI: 10.3969/j.issn.1674-8530.15.0063
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
水泵水轮机不同导叶开口的驼峰特性
李德友1, 宫汝志1, 王洪杰1, 魏显著1,2, 刘占生1, 覃大清1,2
1.哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001; 2.哈尔滨大电机研究所水力发电设备国家重点实验室, 黑龙江 哈尔滨 150040
Unstable head-flow characteristics of pump-turbine under different guide vane openings in pump mode
LI Deyou1, GONG Ruzhi1, WANG Hongjie1, WEI Xianzhu1, 2, LIU Zhansheng1, QIN Daqing1, 2
1.School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; 2.State Key Laboratory of Hydro-Power Equipment, Harbin Institute of Large Electrical Machinery, Harbin, Heilongjiang 150040, China
 全文: PDF (3673 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为研究水泵水轮机在不同导叶开口下的驼峰特性,对某一电站水泵水轮机模型水泵工况进行试验,得到不同导叶开口下的驼峰特性曲线,结果表明随着活动导叶开口减小,在低负荷区水泵工况扬程越高,扬程趋势越陡,同时驼峰现象更明显,但是驼峰区域变小.在试验研究的基础上,对该模型进行三维实体建模,并进行网格划分,采用SST k-ω模型、标准k-ω模型、RNG k-ε 模型和标准k-ε模型分别对19 mm活动导叶开口下各个工况点进行数值模拟,最终确定SST k-ω湍流模型能够较好地符合试验结果.分别选取13,19,25 mm活动导叶开口进行数值模拟,得到水泵工况的扬程、力矩和效率与流量的关系曲线,与试验结果对比,其变化趋势一致.针对19 mm活动导叶开口低负荷工况点、驼峰区工况点、最优工况点和超负荷工况点进行流动特性对比分析,表明驼峰特性与转轮流道内和固定导叶部分流道内的流动分离及旋涡有关.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李德友
宫汝志
王洪杰
魏显著
刘占生
覃大清
关键词水泵水轮机   导叶开口   驼峰特性   数值模拟   试验     
Abstract: In order to obtain the unstable head-flow characteristics of pump-turbines under different guide vane openings, firstly, experiments are carried out on the pump-turbine model for a pump storage power plant in pump mode. It is shown that the head gets higher and its slope becomes stepper at a low flow rate; the unstable head-flow effect exhibits more obviously with decreasing guide vane opening, but the flow rate range for the effect is shrunk. Further, a 3D geometrical model of the pump-turbine model is generated and a set of mesh for its fluid domain is created. The steady turbulent flows in in the pump-turbine model are simulated by using the SST k-ω, standard k-ω, RNG k-ε and standard k-ε turbulence models at various flow rates under 19 mm guide vane opening, showing the SST k-ω turbulence model can result in more accurate performance curves than the others against the experimental measurements. Consequently, the flows in the pump-turbine model are simulated by means of that turbulence model at 13 mm, 19 mm and 25 mm guide vane openings and the head, torque and efficiency curves are obtained and compared with the experimental observations, and good agreement is demonstrated between them. Finally, the internal flow patterns in the unstable region, at part-load, best efficiency and over-load points are analysed at 19 mm guide vane opening. It is identified that the unstable head-flow effect is related to flow separation and vortex occurrence in the runner and a few stay vane passages.
Key wordspump-turbine   guide vane opening   hump characteristics   numerical simulation   experiment   
收稿日期: 2015-03-26;
基金资助:

“十二五”国家科技支撑计划项目(2012BAF03B01-X)

通讯作者: 王洪杰(1962—),男,黑龙江哈尔滨人,教授(通信作者,wanghongjie@hit.edu.cn),主要从事流体控制与仿真、大型流体机械水力稳定性研究.   
作者简介: 李德友(1986—),男,黑龙江青冈人,博士研究生(lideyou@hit.edu.cn),主要从事流体机械数值模拟与试验研究.
引用本文:   
李德友,宫汝志,王洪杰等. 水泵水轮机不同导叶开口的驼峰特性[J]. 排灌机械工程学报, 2016, 34(1): 1-8.
LI De-You-,GONG Ru-Zhi-,WANG Hong-Jie- et al. Unstable head-flow characteristics of pump-turbine under different guide vane openings in pump mode[J]. Journal of Drainage and Irrigation Machinery Engin, 2016, 34(1): 1-8.
 
[1] IKEDA K, INAGAKI M, Niikura K et al. 700-m 400-MW class ultrahigh-head pump turbine[J]. Hitachi review, 2000, 49(2): 81-87.
[2] YANG J, PRAVESI G, YUAN S, et al. Experimental characterization of a pump-turbine in pump mode at hump instability region[J]. Journal of fluids engineering, 2015, 137:051109.
[3] 陈顺义,李成军,周杰,等. 水泵水轮机稳定性预判与对策[J].水力发电,2011,37(12):50-54.
CHEN Shunyi, LI Chengjun, ZHOU Jie, et al. Prognosis on the stability of pump-turbine and the countermeasures[J]. Water power, 2011, 37(12): 50-54.(in Chinese)
[4] 张兰金,纪兴英,常近时. 水泵水轮机泵工况转轮流场分析[J]. 农业机械学报,2008,39(4):69-82.
ZHANG Lanjin, JI Xingying, CHANG Jinshi. Flow analysis of the pump-turbine runner in the pump mode[J]. Transactions of the Chinese society for agricultural machinery, 2008, 39(4): 69-82.(in Chinese)
[5] 王旭鹤,祝宝山,樊红刚,等. 水泵水轮机转轮的三维反问题设计和特性研究[J]. 农业机械学报,2014,45(12):93-98,116.
WANG Xuhe, ZHU Baoshan, FAN Honggang, et al. 3D inverse design and performance investigation of a pump-turbine runner[J]. Transactions of the Chinese society for agricultural machinery, 2014,45(12):93-98,116.(in Chinese)
[6] BRAUN O, KUENY J L, AVELLAN F. Numerical analysis of flow phenomena related to the unstable energy-discharge characteristic of a pump-turbine in pump mode[C]//Proceedings of the 2005 ASME Fluid Engineering Division Summer Meeting and Exhibition. Houston, USA:[s.n.],2005.
[7] 陶然, 肖若富, 杨魏, 等. 可逆式水泵水轮机泵工况的驼峰特性[J]. 排灌机械工程学报, 2014, 32(11): 927-930,936. 浏览
TAO Ran, XIAO Ruofu, YANG Wei, et al. Hump characteristic of reversible pump-turbine in pump mode[J]. Journal of drainage and irrigation machinery engineering, 2014, 32(11): 927-930, 936.(in Chinese)
[8] 王焕茂. 混流式水泵水轮机驼峰区数值模拟及试验研究[D]. 武汉:华中科技大学, 2009.
[9] 王焕茂,吴钢,吴伟章,等. 混流式水泵水轮机驼峰区数值模拟及分析[J]. 水力发电学报,2012(6): 253-258.
[10] WANG Huanmao, WU Gang, WU Weizhang, et al. Numerical simulation and analysis of the hump district of Francis pump-turbine[J]. Journal of hydroelectric engineering, 2012(6): 253-258.(in Chinese)
[11] 冉红娟,张瑶,罗先武,等. 可逆式水轮机泵工况下驼峰现象的数值模拟[J]. 水力发电学报,2011(3): 175-179.
[12] RAN Hongjuan, ZHANG Yao, LUO Xianwu, et al. Numerical simulation of the positive-slope performance curve of a reversible hydro-turbine in pumping mode[J]. Journal of hydroelectric engineering, 2011(3): 175-179.(in Chinese)
[13] 舒崚峰. 水泵水轮机驼峰区与“S”区数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
[14] LI D Y, WANG H J, XIANG G M, et al. Unsteady simulation and analysis for hump characteristics of a pump turbine model[J]. Renewable energy, 2015, 77: 32-42.
[15] LIU J T, LIU S H, WU Y L, et al. Numerical investigation of the hump characteristic of a pump-turbine based on an improved cavitation model[J]. Computer & fluids, 2012, 68: 105-111.
[16] 覃大清,张乐福. 关于水泵水轮机最高扬程驼峰区安全裕度选取的建议[J]. 大电机技术,2006(4):46-48.
[17] QIN Daqing, ZHANG Lefu. The proposal for the hump safety margin at pump maximum head of pump turbine[J]. Large electric machine and hydraulic turbine, 2006(4): 46-48.(in Chinese)
[18] LI Deyou, WANG Hongjie, GONG Ruzhi, et al. Design and experiment of turbine model testing system based on LabVIEW[J]. Journal of hydroelectric engineering, 2014, 33(4): 263-268.(in Chinese)
[1] 李琪飞, 谭海燕, 李仁年, 蒋雷, 吕文娟. 异常低水头对水泵水轮机压力脉动的影响[J]. 排灌机械工程学报, 2016, 34(2): 99-104.
[2] 杨敏官, 王达, 高波, 陆胜. 混流式核主泵导叶-壳体匹配水力特性[J]. 排灌机械工程学报, 2016, 34(2): 110-114.
[3] 王党雄, 曹卫东, 张忆宁, 刘晓娟, 马金星. 蜗壳断面形状及叶轮位置对蜗壳式轴流泵性能的影响[J]. 排灌机械工程学报, 2016, 34(2): 105-109.
[4] 黄剑峰, 张立翔, 姚激, 龙立焱. 水轮机泥沙磨损两相湍流场数值模拟[J]. 排灌机械工程学报, 2016, 34(2): 128-133.
[5] 徐媛晖, 张启华, 施卫东, 陆伟刚, 王川, 周岭. 塑料井泵新型轴向导叶设计及内部压力脉动特性[J]. 排灌机械工程学报, 2016, 34(1): 18-25.
[6] 宫汝志, 李德友, 王洪杰, 刘世勋, 魏显著,. 乌江构皮滩水电机组水力稳定性试验研究[J]. 排灌机械工程学报, 2016, 34(1): 32-37.
[7] 李传君, 黄婉婉, 李凯, 韩彬, 王志强. 液控智能转换接头的数值分析及优化设计[J]. 排灌机械工程学报, 2016, 34(1): 45-50.
[8] 郑健,, 王燕,, 蔡焕杰, 张恩继,, 孙雨欣,. 秸秆颗粒形态对沟灌入渗特征影响的试验研究[J]. 排灌机械工程学报, 2016, 34(1): 66-72.
[9] 魏光辉,, 马亮, 杨鹏年. 地下水位与灌溉定额对棉花土壤水分的动态影响模拟[J]. 排灌机械工程学报, 2016, 34(1): 73-80.
[10] 李跃, 施卫东, 韩笑笑. 不同结构形式对串并联离心泵振动特性的影响[J]. 排灌机械工程学报, 2015, 33(9): 744-749.
[11] 杨从新, 富友, 强盼, 刘洋. 不同压出室下叶轮切割对离心泵性能影响[J]. 排灌机械工程学报, 2015, 33(9): 750-755.
[12] 谭东杰,, 白羽, 刘厚林, 董亮, 李柏松, 张宏. 导叶相位角度对管道输油泵水力性能的影响[J]. 排灌机械工程学报, 2015, 33(9): 756-761.
[13] 杨兴标, 李红, 陈超. 湍流模型对离心泵扬程预测准确性的影响[J]. 排灌机械工程学报, 2015, 33(8): 656-660.
[14] 杨军虎, 李泰龙. 蜗壳结构对液力透平径向力的影响[J]. 排灌机械工程学报, 2015, 33(8): 651-655.
[15] 张蓝国,, 周大庆, 陈会向. 抽蓄电站全过流系统水泵工况停机过渡过程CFD模拟[J]. 排灌机械工程学报, 2015, 33(8): 674-680.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved