排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2015, Vol. 33 Issue (7): 553-559    DOI: 10.3969/j.issn.1674-8530.14.0111
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
双心室心脏泵内部流动非定常数值模拟
袁建平1, 孙文婷1, 王龙滟2, 付燕霞1, 洪锋1, 周帮伦1
1.江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013; 2.昆士兰科技大学科学工程学院, 澳大利亚 布里斯班 4000
Numerical simulation of unsteady blood flows in Bi-ventricular Assist Device
Yuan Jianping1, Sun Wenting1, Wang Longyan2, Fu Yanxia1, Hong Feng1, Zhou Banglun1
1.National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.Science and Engineering Faculty, Queensland University of Technology, Brisbane 4000, Australia
 全文: PDF (3417 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究某新型离心式双心室人工心脏泵内部血液流动特性,采用CFD技术对泵设计工况下的内部流场进行数值模拟分析,获得了该心脏泵内部速度、湍流动能和切应力分布规律,同时得到了泵进口流量、作用在不同过流部件的轴向力和径向力变化情况,并对蜗壳处的压力脉动进行分析.研究结果表明:该型双心室心脏泵内部流场没有出现明显的流动死水区,满足心脏泵的抗血栓要求;泵内压力和切应力分布规律相似,整体分布均匀,满足抗溶血性能的要求;由于心脏泵的整体设计为对称结构,很好地平衡了左右叶轮的轴向力;较小的泵整体结构的径向力和转矩有利于心脏泵抵御瞬态的径向负荷;左右两泵蜗壳处的压力脉动呈现明显的正弦周期性变化规律,均含有6个波峰和6个波谷,且各监测点处压力脉动的主频为叶片通过频率,这是由于叶轮和蜗壳的动静干涉作用.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁建平
孙文婷
王龙滟
付燕霞
洪锋
周帮伦
关键词离心式双心室心脏泵   轴向力   径向力   压力脉动   溶血   血栓   数值模拟     
Abstract: The unsteady blood flow field in a new type of ventricular assist device, namely the Bi-ventricular Assist Device(BVAD)under the design condition is calculated based on a CFD method. The blood velocity, turbulent kinetic energy and shear stress, mass flow rate in the pump inlets, axial and radial thrusts acted on the different components are obtained; moreover the static pressure fluctua-tion in the volutes is also analyzed. The results show that there are no notable stagnant regions for thrombus formation in the device. The pressure and shear stress are distributed similarly and uniformly in the device, showing an excellent anti-hemolysis performance. Because of the symmetrical structure of the BVAD, the axial force has been basically balanced by itself. The radial force and torque on the impellers are relatively low, showing the device can endure a transient radial load well. The pressure fluctua-tions in the volutes vary periodically, exhibiting six peaks and six valleys in time domain. The dominated frequency at every monitoring point is the blade passing frequency of the device due to the rotor-stator interaction.
Key wordscentrifugal Bi-ventricular Assist Device   axial force   radial force   pressure fluctuation   hemolysis   thrombosis   numerical simulation   
收稿日期: 2014-07-18;
基金资助:国家自然科学基金资助项目(51349004)
通讯作者: 孙文婷(1990—),女,江苏镇江人,硕士研究生(1054406940@qq.com),主要从事流体机械数值模拟研究.   
作者简介: 袁建平(1970—),男,江苏常州人,研究员,博士生导师(yh@ujs.edu.cn),主要从事流体机械及工程研究.
引用本文:   
袁建平,孙文婷,王龙滟等. 双心室心脏泵内部流动非定常数值模拟[J]. 排灌机械工程学报, 2015, 33(7): 553-559.
YUAN Jian-Ping-,SUN Wen-Ting-,WANG Long-Yan- et al. Numerical simulation of unsteady blood flows in Bi-ventricular Assist Device[J]. Journal of Drainage and Irrigation Machinery Engin, 2015, 33(7): 553-559.
 
[1] Chetan B P,Joseph G R. Durable mechanical circulatory support devices[J].Progress in Cardiovascular Diseases,2011,54:132-143.
[2] Christopher A T, Brantley D G, Francisco A A, et al. Ventricular assist devices today and tomorrow[J].Journal of Cardiothoracic and Vascular Anesthesia,2010,24(4):656-680.
[3] Allaire P E,Maslen P E,Kim H C, et al. Design of a magnetic bearing supported prototype centrifugal artificial heart pump[J].Tribology Transactions,1996,39(3):663-669.
[4] Daniel Timms. A review of clinical ventricular assist devices[J].Medical Engineering & Physics,2011,33:1041-1047.
[5] Sue Chung-Yang,Tsai Nan-Chyuan. Human powered MEMS-based energy harvest devices[J].Applied Energy,2012,93:390-403.
[6] Chi Nan Pai. Sensorless measurement of pulsatile flow rate using a disturbance force observer in a magnetically levitated centrifugal blood pump during ventricular assistance[J]. Flow Measurement and Instrumentation,2010,21:33-39.
[7] 武文芳,吴兵.人工心脏的历史及研究进展[J].中国医学装备,2008,5(3):55-58.
Wu Wenfang,Wu Bing. The history and research progress of artificial heart[J].China Medical Equipment,2008,5(3):55-58.(in Chinese)
[8] 徐先懂,龚中良,谭建平. 基于外磁场耦合的血泵驱动系统[J].中南大学学报:自然科学版,2007,38(4):711-714.
Xu Xiandong,Gong Zhongliang,Tan Jianping. Blood pump driven system based on extracorporeal magnetic filed couple[J].Journal of Central South University: Science and Technology,2007,38(4):711-714.(in Chinese)
[9] Song X. Computational fluid dynamics(CFD)study of the 4th generation prototype of a continuous flow ventricu-lar assist device(VAD)[J]. Journal of Biomechanical Engineering,2004,126(2):180-187.
[10] Allaire E,Wood H G. Blood flow in a continuous flow ventricular assist device[J].Artificial Organs,1999,23(8):769-773.
[11] 钱道光.基于CFD的轴流式血泵内流动特性分析[D].武汉:武汉科技大学机械自动化学院,2009.
[12] 王芳群.应用CFD技术探明叶轮设计对人工心脏血泵内流场及切应力分布的影响[D].镇江:江苏大学流体机械工程技术研究中心,2003.
[13] 吴广辉,蔺嫦燕,李冰一,等.应用计算流体动力学方法研究人工心脏流场[J].生物医学工程与临床,2008,12(6):439-442.
Wu Guanghui,Lin Changyan,Li Bingyi, et al. Study on flow patterns of blood pumps with computational fluid dynamics[J].Biomedical Engineering and Clinical Medi-cine,2008,12(6):439-442.(in Chinese)
[14] 刘晶,张敏,John C Chai. 商用软件GAMBIT网格数据解析和应用文题[EB/OL].中国科技论文在线,http://www.paper.edu.cn.
[15]   Liu Jing,Zhang Min,John C Chai. Applications of tansformation of unstructured mesh from commorcial software GAMNIT[EB/OL]. Sciencepaper Online,http://www.paper.edu.cn.(in Chinese)
[16] Chua L P,Ong K S. Leakage flow measurements in a bio-centrifugal ventricular assist device model[J]. Artificial Organs,2003,27(10):942-959.
[1] 杨兴标, 李红, 陈超. 湍流模型对离心泵扬程预测准确性的影响[J]. 排灌机械工程学报, 2015, 33(8): 651-655.
[2] 杨军虎, 李泰龙. 蜗壳结构对液力透平径向力的影响[J]. 排灌机械工程学报, 2015, 33(8): 656-660.
[3] 刘瑞华, 李贵东, 王洋. 气液两相下离心泵内部流动数值模拟[J]. 排灌机械工程学报, 2015, 33(8): 661-666.
[4] 张蓝国,, 周大庆, 陈会向. 抽蓄电站全过流系统水泵工况停机过渡过程CFD模拟[J]. 排灌机械工程学报, 2015, 33(8): 674-680.
[5] 王洋, 彭帅, 刘瑞华, 刘洋. 旋涡自吸泵内部流场压力脉动数值模拟[J]. 排灌机械工程学报, 2015, 33(7): 583-588.
[6] 郭霖, 白丹, 程鹏, 周文. 滴灌灌水器三角形迷宫流道优化设计[J]. 排灌机械工程学报, 2015, 33(7): 634-639.
[7] 张俊杰, 施卫东, 张德胜, 张琳. 汽车冷却水泵高速运行时密封件损伤数值模拟与优化[J]. 排灌机械工程学报, 2015, 33(7): 606-610.
[8] 李仁年,, 胡鹏林, 黎义斌,, 毕祯, 周栋. 叶顶间隙对斜流泵进口压力脉动影响的数值分析[J]. 排灌机械工程学报, 2015, 33(7): 560-565.
[9] 康灿, 杨鑫, 于晓杰. 多级离心泵内部级间影响及压力脉动特征[J]. 排灌机械工程学报, 2015, 33(7): 566-571.
[10] 王春林, 曾成, 杨晓勇, 彭海菠, 刘栋. 双吸泵正反转内部流场数值模拟及性能预测[J]. 排灌机械工程学报, 2015, 33(7): 577-582.
[11] 陈汇龙, 付杰, 李述林, 赵斌娟, 邹强, 刘金凤. 螺旋槽上游泵送机械密封端面间液膜压力脉动特性[J]. 排灌机械工程学报, 2015, 33(6): 504-509.
[12] 叶晓琰, 冯耀宁, 汪靖, 张德胜, 胡敬宁. 海水淡化泵水润滑轴承试验测试与分析[J]. 排灌机械工程学报, 2015, 33(6): 510-515.
[13] 王鹏, 袁寿其, 王秀礼, 尹庭赟. 偏心距对核主泵径向力影响的数值分析[J]. 排灌机械工程学报, 2015, 33(6): 461-466.
[14] 袁建平, 朱钰雯, 周帮伦, 夏水晶, 沈陈栋. 余热排出泵内部压力脉动特性分析[J]. 排灌机械工程学报, 2015, 33(6): 475-480.
[15] 韩伟, 金毅, 李仁年, 岳婷, 权辉. 颗粒对离心泵内部压力脉动特性的影响[J]. 排灌机械工程学报, 2015, 33(6): 467-474.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved