排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2011, Vol. 29 Issue (3): 241-245    DOI: 10.3969/j.issn.1674—8530.2011.03.012
流体工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
半立方抛物线形渠道正常水深算法
赵延风1, 王正中1,方兴2, 刘计良1, 洪安宇1
( 1. 西北农林科技大学水工程安全与病害防治研究中心, 陕西 杨凌712100; 2. 奥本大学土木工程系, 美国 阿拉巴马州 奥本 36849)
Calculation method for normal depth of semi- cubic parabolic channels
Zhao Yanfeng1,Wang Zhengzhong1,Fang Xing2,Liu Jiliang1,Hong Anyu1
(1.Research Center of Water Engineering Safety and Disaster Prevention,Northwest A & F University,Yangling,Shaanxi 712100,China;2.Department of Civil Engineering,Auburn University,Auburn,Alabama 36849,U.S.A.)
 全文: PDF (342 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了给半立方抛物线形渠道断面正常水深的计算提供一种简捷、通用、精度较高的显函数计算公式,根据迭代理论并采用优化计算确定初值函数的方法进行分析研究.通过引入断面特征水深的概念,对半立方抛物线形渠道正常水深的基本方程进行变换处理,推导出收敛速度较快的迭代公式,并证明了公式的收敛性;在断面特征水深范围即无量纲正常水深H∈[0.025,40]范围内,对迭代公式进行优化计算,取得合理的迭代初值函数;合理初值与迭代公式的配合使用,得到半立方抛物线形渠道断面正常水深的显函数直接计算公式,并对公式进行了误差分析以及用工程实例进行了验证.结果表明:在工程常用的断面特征水深范围内,正常水深的最大相对误差小于0.3%,计算公式具有形式简单、精度高、适用范围广的优点,该研究为排灌渠道的断面设计以及渠道流量控制时求解均匀流水深提供了简捷方法.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵延风
王正中
方兴
刘计良
洪安宇
关键词灌溉渠道   正常水深   迭代理论   优化计算   半立方抛物线   断面特征水深     
Abstract:  In order to obtain the simple and general explicit formula with high accuracy for computing the normal depth of semi-cubic parabolic channels,formula for direct computation of the normal depth was developed by obtaining initial function using iteration theory and optimization.Mathematical transformation on the basic equation for determining the normal depth of semi-cubic parabolic channel was made by introducing the concept of characteristic depth of cross-section,and the iterative formula with high convergence rate was derived.According to the optimization of the iterative formula in the range of 0.025 to 40 for dimensionless normal depth H,the reasonable initial function was developed.Direct calculation formula for computing the normal depth of semi-cubic parabolic channels was obtained by using the reasonable initial value and iterative formula.Error analysis of the formula was also carried out.The result indicates that the maximum relative error of the formula is less than 0.3% for the most frequently used range of characteristic depth of cross-section.The formula developed in this paper is simple and has high accuracy with wide range of applications,and it can provide simple method for computing the normal depth when the channel section is designed for irrigation and drainage and controlling the water level
Key wordsirrigation channels   normal depth   iteration theory   optimization   semi-cubic parabola   characteristic depth of cross-section   
收稿日期: 2010-10-21; 出版日期: 2011-05-30
基金资助:

国家863计划项目(2002AA62Z3191);陕西省水利科技专项计划项目(2006-01)

通讯作者: 王正中( 1963-) , 男, 陕西彬县人, 教授, 博士生导师( wangzz0910@ yahoo.com.cn) , 主要从事水工结构工程及工程水力学研究   
作者简介: 赵延风( 1963-) , 男, 陕西西安人, 副研究员( zhyf2009@ yahoo.cn) , 主要从事工程水力学研究.
引用本文:   
赵延风, 王正中,方兴等. 半立方抛物线形渠道正常水深算法[J]. 排灌机械工程学报, 2011, 29(3): 241-245.
ZHAO Yan-Feng, Wang-Zheng-Zhong,FANG Xing et al. Calculation method for normal depth of semi- cubic parabolic channels[J]. Journal of Drainage and Irrigation Machinery Engin, 2011, 29(3): 241-245.
 
[1] 姚林碧 张仁田.渠道自动控制技术与发展趋势[J].排灌机械,20(4):34-38.
[2] Swamee Prabhata K.Normal-depth equations for irrigation canals[J].Journal of Irrigation Drainage Engineering,1994,120(5):942 -948.
[3] Swamee Prabhata K,Rathie Pushpa N.Exact solutions for normal depth problem[J].Journal of Hydraulic Research,2004,42(5):541 -547.
[4] Shrestha Ravi C,Barkdoll Brian.A direct solution to normal depth in open channels[C] // Conference Proceeding of World Water & Environmental Resources Congress,2005,173:405.
[5] Anwar Arif A,Clarke Derek.Design of hydraulically efficient power-law channels with freeboard[J].Journal of Irrigation Drainage Engineering,2005,131 (6):560 -563.
[6] Anwar Arif A,De Vries Tonny T.Hydraulically efficient power-law channels[J].Journal of Irrigation Drainage Engineering,2003,129(1):18 -26.
[7] 卢琴 王正中 任武刚.抛物线形渠道收缩水深简捷计算公式[J].干旱地区农业研究,2007,25(2):134-136.
[8] 文辉 李风玲.抛物线形断面渠道收缩水深的解析解[J].长江科学院院报,2009,26(9):32-34.
[9] 文辉 李风玲.立方抛物线断面渠道收缩水深的直接计算方法[j].人民长江,2009,40(13):38-39.
[10] 魏文礼 杨国丽.立方抛物线形渠道水力最优断面的计算[J].武汉大学学报:工学版,2006,39(3):49-51.
[11] 文辉 李风玲.立方抛物线形渠道水力计算的显式计算式[J].人民黄河,2010,32(1):75-76.
[12] 赵振兴 何建宗.水力学[M].北京:清华大学出版社,2005.
[13] 关治 陈景良.数值计算方法[M].北京:清华大学出版社,1990.
[1] 刘计良1, 王正中1, 苏德慧2, 杨晓松1, 刘铨鸿1. 典型断面渠道正常水深计算[J]. 排灌机械工程学报, 2012, 30(3): 324-329.
[2] 赵延风, 王正中, 方 兴, 刘计良, 洪安宇. 排灌输水隧洞正常水深的简捷算法[J]. 排灌机械工程学报, 2011, 29(6): 523-528.
[3] 张宽地, 王光谦, 吕宏兴, 陈俊英, 洪 成. 基于改进粒子群算法求解马蹄形断面正常水深[J]. 排灌机械工程学报, 2011, 29(1): 54-60.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved