排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2015, Vol. 33 Issue (3): 209-215    DOI: 10.3969/j.issn.1674-8530.14.0077
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
蜗壳形状对离心泵流动诱导噪声的影响
司乔瑞, 袁建平, 衡亚光, 袁寿其
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Effects of cross-section and cut-water shapes of volute on flow induced noise in centrifugal pumps
Si Qiaorui, Yuan Jianping, Heng Yaguang, Yuan Shouqi
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (2864 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于蜗壳对离心泵流动诱导噪声的产生及传播具有重要影响,在原马蹄形断面蜗壳的基础上重新设计了一种矩形断面蜗壳,并将两种断面的蜗壳与同一叶轮组合进行流场数值模拟和声学求解.流动诱导噪声的求解基于Lighthill声类比理论,采用大涡模拟和声学有限元法相结合的混合算法.在原型泵的基础上还分析了采用矩形隔舌和圆角隔舌的扬程、效率和声学性能差异,并对模拟结果进行了试验验证.计算结果表明:矩形断面蜗壳模型泵和马蹄形断面蜗壳模型泵的水力性能近似;2种断面模型泵内流动诱导噪声的主频均为叶片通过频率290 Hz;从内部流场的压力云图、速度矢量分布及方向分析可发现矩形断面蜗壳内的流动状态更佳;相对于马蹄形断面蜗壳,采用矩形断面蜗壳模型泵的声压级平均小5 dB,声学性能更优;相对于矩形隔舌模型,采用圆角隔舌模型泵的水力性能更优,声学性能也较好,声压级平均小4 dB.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
司乔瑞
袁建平
衡亚光
袁寿其
关键词离心泵   蜗壳设计   流动诱导噪声   声类比   大涡模拟     
Abstract: Volutes have significant impact on the generation and propagation of flow-induced noise in centrifugal pumps. A volute with rectangular cross-section is designed to replace the original one with horseshoe-shaped cross section; subsequently, fluid dynamics simulation and acoustics computation are carried out in a centrifugal pump which is composed of the same impeller and either newly designed or original volute. The generation and propagation of flow-induced noise in the pump is solved by using a hybrid algorithm in which large eddy simulation and acoustic finite element analysis are combined based on the Lighthill acoustic analogy theory. The effects of cut-water of the volute on the pump head, efficiency and acoustic performance are also analyzed by employing two cut-water shapes, namely sharp and round edges. Some simulation results are verified by the existing experimental data. The analysis results show that both kinds of volute produce a similar hydraulic performance and result in a 290 Hz dominating frequency, i.e. blade passing frequency, for the noise. The volute with rectangular cross-section exhibits a better flow pattern than that with horseshoe-shaped cross-section according to the pressure contours, velocity vector distribution and flow direction inside the two pumps. Further the volute with rectangular cross-section lowers the averaged sound pressure level by 5 dB, showing an improved acoustic performance. Compared with the volute with sharp edge cut-water, the volute with round edge cut-water not only demonstrates a better hydraulic performance, but also possesses a more attractive acoustic behavior in account of 4 dB averaged sound pressure level reduction.
Key wordscentrifugal pumps   volute design   flow induced noise   lighthill acoustic analogy   large eddy simulation   
收稿日期: 2014-06-04;
基金资助:

“十二五”国家科技支撑计划项目(2011BAF14B04);江苏高校优势学科建设工程项目;江苏省自然科学青年基金资助项目(BK20140554)

通讯作者: 司乔瑞(1986—),男,河南开封人,博士研究生(siqiaorui@163.com),主要从事泵内部流场及诱导振动噪声研究.   
作者简介: 袁建平(1970—),男,江苏常州人,研究员,博士生导师(yh@ujs.edu.cn),主要从事泵内部流场数值计算及现代测试技术研究.
引用本文:   
司乔瑞,袁建平,衡亚光等. 蜗壳形状对离心泵流动诱导噪声的影响[J]. 排灌机械工程学报, 2015, 33(3): 209-215.
SI Qiao-Rui,YUAN Jian-Ping,HENG Ya-Guang et al. Effects of cross-section and cut-water shapes of volute on flow induced noise in centrifugal pumps[J]. Journal of Drainage and Irrigation Machinery Engin, 2015, 33(3): 209-215.
 
[1] 袁寿其, 司乔瑞, 薛菲, 等. 离心泵蜗壳内部流动诱导噪声的数值研究[J]. 排灌机械工程学报, 2011,29(2): 93-98. 浏览
Yuan Shouqi, Si Qiaorui, Xue Fei, et al. Numerical calculation of internal flow-induced noise in centrifugal pump volute[J]. Journal of Drainage and Irrigation Machinery Engineering,2011,29(2):93-98.(in Chinese) 浏览
[2] 王勇,刘庆,刘东喜,等.不同叶片冲角离心泵内流诱导振动噪声研究[J].流体机械,2013,41(7):1-4,32.
Wang Yong,Liu Qing,Liu Dongxi,et al. Analysis of flow induced vibration and noise in centrifugal pumps with different blade inlet incidence angle[J]. Fluid Machinery, 2013,41(7):1-4,32.(in Chinese)
[3] Johann F G. Centrifugal Pumps[M]. New York: Springer, 2008.
[4] Langthjem M A,Olhoff N. A numerical study of flow-induced noise in a two-dimensional centrifugal pump—Part II:Hydroacoustics[J]. Journal of Fluids and Structures, 2004, 19(3): 369-386.
[5] Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump—Part A: Use of PDV data to compute the pressure field[J]. Journal of Fluids Engineering, 1995, 117(3): 24-29.
[6] Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump—Part B: Effects of blade-tongue interactions[J]. Journal of Fluids Engineering, 1995, 117(3): 30-35.
[7] Si Qiaorui, Yuan Shouqi, Yuan Jianping, et al. Study on the influence of volute to flow-induced noise in centrifugal pump[J]. Advanced Material Research, 2012, 1009: 516-517.
[8] 司乔瑞, 袁寿其, 袁建平, 等. 基于CFD/CA的离心泵流动诱导噪声数值预测[J]. 机械工程学报, 2013, 49(22): 177-184.
Si Qiaorui, Yuan Shouqi, Yuan Jianping, et al. Flow-induced noise calculation of centrifugal pumps based on CFD/CA method[J]. Journal of Mechanical Enginee-ring, 2013, 49(22): 177-184.(in Chinese)
[9] Timusher S. Development and experimental validation of 3D acoustic-votex numerical procedure for centrifugal pump noise prediction[C]//Proceedings of ASME Flui-ds Engineering Division Summer Meeting, 2009: 389-398.
[10] Claus W, Thomas H, Pierre S. Large-Eddy Simulation for Acoustics [M]. Cambridge: Cambridge University Press, 2007.
[11] 王治国. MSC.ACTRAN工程声学有限元分析理论与应用[M]. 北京:国防工业出版社,2007.
[12] Heng Yaguang, Yuan Shouqi, Hong Feng, et al. A hybrid method for flow-induced noise in centrifugal pumps based on LES and FEM[C]//Proceedings of ASME Fluids Engineering Division Summer Meeting, 2013: 16594.
[13] Keller J, Parrondo J, Barrio R, et al. Effects of the pump-circuit acoustic coupling on the blade-passing frequency perturbations[J]. Applied Acoustics, 2014, 76: 150-156.
[14] 杜功焕. 声学基础[M]. 南京:南京大学出版社, 2001.
[1] 刘建瑞, 付威, 高振军, 何小可, 陈斌, 汤富俊. 交错叶片对双吸离心泵性能影响的数值分析[J]. 排灌机械工程学报, 2015, 33(3): 196-202.
[2] 卜学兵, 陈晖, 李永鹏, 王文廷. 低比转数变工况离心泵的性能优化[J]. 排灌机械工程学报, 2015, 33(3): 203-208.
[3] 王勇, 黄浩钦, 刘厚林, 王文博, 郭豹. 叶片出口边侧斜对船用离心泵外辐射噪声的影响[J]. 排灌机械工程学报, 2015, 33(2): 104-110.
[4] 王其磊. 多级离心泵转子固有频率影响因素的比较[J]. 排灌机械工程学报, 2015, 33(1): 31-36.
[5] 程效锐,, 张楠,, 赵伟国,. 双吸泵输送含沙水流时蜗壳内压力脉动特性[J]. 排灌机械工程学报, 2015, 33(1): 37-42.
[6] 李文广,. 黏油空化流动研究现状与展望[J]. 排灌机械工程学报, 2015, 33(1): 1-9.
[7] 王洋, 印刚, 王维军, 李贵东, 崔宇蕊. 低比转数恒扬程泵内部流场数值模拟[J]. 排灌机械工程学报, 2015, 33(1): 10-15.
[8] 周盼, 张权, 率志君, 李玩幽. 离心泵进水口形式设计及其对振动噪声的影响[J]. 排灌机械工程学报, 2015, 33(1): 16-19.
[9] 戴菡葳, 刘厚林, 丁剑, 谈明高, 王勇. 离心泵叶轮出口宽度对泵腔内压力脉动分布的影响[J]. 排灌机械工程学报, 2015, 33(1): 20-25.
[10] 卢加兴, 袁寿其, 袁建平, 司乔瑞, 骆寅. 射流水冷结构对离心泵性能影响的试验研究[J]. 排灌机械工程学报, 2014, 32(9): 737-741.
[11] 曹卫东, 刘光辉, 刘冰. 两级离心泵径向导叶水力优化[J]. 排灌机械工程学报, 2014, 32(8): 663-668.
[12] 黄萍, 张丽, 周岭, 付燕霞, 陆伟刚. 向心径向导叶内部流场的多工况PIV测量[J]. 排灌机械工程学报, 2014, 32(8): 674-678.
[13] 何希杰, 张梦, 李学英. 低比转数泵扬程Ⅰ级、Ⅱ级与Ⅲ级影响因素排序[J]. 排灌机械工程学报, 2014, 32(7): 578-582.
[14] 周盼, 张权, 率志君, 李玩幽. 不同叶片数对离心泵流场诱导振动的影响[J]. 排灌机械工程学报, 2014, 32(7): 567-571.
[15] 王海宇, 张德胜, 施卫东, 张磊. 基于流固耦合的离心泵蜗壳结构分析与优化[J]. 排灌机械工程学报, 2014, 32(6): 472-476.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved