排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2015, Vol. 33 Issue (1): 1-9    DOI: 10.3969/j.issn.1674-8530.14.0073
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
黏油空化流动研究现状与展望
李文广1,2
1.兰州理工大学能源与动力工程学院, 甘肃 兰州 730050; 2.格拉斯哥大学工程学院, 苏格兰 格拉斯哥G12 8QQ
State-of-the-art and prospects in study on viscous oil cavitating flows
Li Wenguang1,2
1.School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2.School of Engineering, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
 全文: PDF (1667 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 黏油会使离心泵空化性能恶化,如何改进其空化性能是必须面对的问题,因此掌握黏油空化流动特性显得十分必要.总结了现有的黏油空化流动的研究成果,对液体表面张力、黏度和非凝结气体(空气)含量的影响进行了评论,对空化机理模型、空化计算模型和空化发生的判据进行了讨论,并未来的研究内容进行了展望.结论表明,在翼型绕流或离心泵黏油空化流动试验方面还有许多工作可做,黏油空化流动计算模型尚有改进的余地.最大应力空化准则在黏油空化流动中的适用性亦有待考察.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文广
关键词黏油   空化   表面张力   黏度   离心泵   非凝结气体   空化初生     
Abstract: Viscous oils can degrade the cavitation performance of a centrifugal pump, how to improve the impaired performance is a problem which we must deal with, naturally it is quite necessary to have a full understanding of characteristics of viscous oil cavitating flows. In the paper, outcomes in the study on viscous oil cavitating flows are reviewed briefly; effects of liquid surface tension, viscosity and non-condensable gas(air)content on the characteristics are explained. The cavitation nucleation mechanism, cavitation CFD modeling and cavitation criteria are argued, a few prospects in the study on viscous oil cavitating flows are proposed as well. In conclusion, there are many experiments on viscous oil cavitating flows over a hydrofoil or through a cascade or inside a centrifugal pump that need to be done; updates in the cavitation CFD models are on demand too. Additionally the applicability of the maximum tension cavitation criterion into viscous oil cavitating flows needs to be clarified.
Key wordsviscous oil   cavitation   surface tension   viscosity   centrifugal pump   non-condensable gas   cavitation inception   
收稿日期: 2014-05-28;
通讯作者: 李文广(1964—),男,辽宁兴城人,教授(liwg40@sina.com),主要从事泵、生物软组织力学和光伏系统多物理解析研究.   
作者简介: 李文广(1964—),男,辽宁兴城人,教授(liwg40@sina.com),主要从事泵、生物软组织力学和光伏系统多物理解析研究.
引用本文:   
李文广,. 黏油空化流动研究现状与展望[J]. 排灌机械工程学报, 2015, 33(1): 1-9.
LI Wen-Guang-,. State-of-the-art and prospects in study on viscous oil cavitating flows[J]. Journal of Drainage and Irrigation Machinery Engin, 2015, 33(1): 1-9.
 
[1] Dean R B. The formation of bubbles[J]. Journal of Applied Physics, 1944, 15(5): 446-450.
[2] Vincent R S. Measurement of tension in liquids by means of a metal bellows[J]. Proceedings of Royal Society of London, 1941, 53(2): 126-140.
[3] Arakeri V H. Cavitation inception[J]. Proceedings of Indian Academy of Sciences, 1979, C2(2): 149-177.
[4] Harvey N, McElroy W D, Whiteley A H. On cavity formation in water[J]. Journal of Applied Physics, 1947, 18(2): 162-172.
[5] 爱杰施钦. 离心泵[M]. 黄宗鑫,译. 北京:石油工业出版社,1960.
[6] 曹广军,吴玉林,刘树红,等.离心油泵输送黏性流体空蚀性能实验研究[J].工程热物理学报,2006,27(5):784-786.
Cao Guangjun, Wu Yulin, Liu Shuhong, et al. Experiment studies on cavitation characteristics of the centrifugal oil pump for pumping viscous liquid[J]. Journal of Engineering Thermophysics, 2006, 27(5): 784-786.(in Chinese)
[7] 曹广军,吴玉林,刘树红,等.转速对油泵空蚀性能影响及换算研究[J].工程热物理学报,2008,29(1):65-67.
Cao Guangjun, Wu Yulin, Liu Shuhong, et al. Influence of the shaft speed to the centrifugal oil pump cavitation characteristics and conversion study[J]. Journal of Engineering Thermophysics, 2008, 29(1): 65-67.(in Chinese)
[8] Poritsky H. The Collapse or growth of a spherical bubble or cavity in a viscous fluid[C]//Proceedings of the First US ASME National Congress on Applied Mechanics, 1952: 813-821.
[9] Levkovskii Y L, II′in V P. Effect of surface tension and viscosity on the collapse of a cavitation bubble[J]. Journal of Engineering Physics, 1968, 14(5): 903-908.
[10] Yang W, Yeh H C. Theoretical study of bubble dynamics in purely viscous fluids[J]. AIChE Journal, 1966, 12(5): 927-931.
[11] Kuvshinov G I. Effect of surface tension on the collapse of a cavitation bubble[J]. Journal of Engineering Physics, 1991, 60(1): 41-46.
[12] Samiei E, Shams M, Ebrahimi R. A novel numerical scheme for the investigation of surface tension effects on growth and collapse of cavitation bubbles[J]. European Journal of Mechanics B: Fluid, 2011, 30: 41-50.
[13] Liu X M, He J, Lu J, et al. Growth and collapse of laser-induced bubbles in glycerol-water-mixtures[J]. Chinese Physics B, 2008, 17(7): 2574-2579.
[14] Iwai Y,Li S C. Cavitation erosion in water having different surface tensions[J]. Wear, 2003, 254(1/2): 1-9.
[15] 高橋清,島章,冨田幸雄.水-グリセリン溶液中におけるレーザ生成気泡の挙動に関する研究[J].日本機械学會論文集:B編,1990,56(532):3587-3591.
Takahashi K, Shima A, Tomita Y. Investigation on the behaviour of laser produced bubbles in water-glycerol solutions[J]. Transactions of JSME: Series B, 1990, 56(532): 3587-3591.(in Japanese)
[16] 沼知福三郎,椎名武.キャビテーション発生機構に関する一寄與(第1報)[J].日本機械学會論文集:B編,1937,3(11):177-181.
Numachi F. On the cavitation mechanism with particular reference to the air content and the temperature of water[J]. Transactions of JSME:Series B,1937, 3(11): 177-181.(in Japanese)
[17] 大場利三郎,金健泰,新妻弘明,等.コールタカウンタによるキャビテーション核の測定[J].日本機械学會論文集:B編,1980,46(408):1485-1491.
Oba R, Kim K, Hiroaki N, et al. Cavitation nuclei measurements by a newly made coulter counter without adding salt into water[J]. Transactions of JSME: Series B, 1980, 46(408): 1485-1491.(in Japanese)
[18] 伊藤幸雄,山田誠,大場利三郎,等.安定な核分布特性を持つキャビテ-ション保証試験水槽[J].日本機械学會論文集:B編,1988,54(502):1222-1225.
Ito Y, Yamada M, Oba R, et al. Cavitation tunnel characterized by stable cavitation-nuclei-distributions [J]. Transactions of JSME: Series B, 1988, 54(502): 1222-1225.(in Japanese)
[19] Holl J W. Nuclei and cavitation[J]. ASME Journal of Basic Engineering, 1970, 92(4): 681-688.
[20] Ukon Y, Tamiya S, Kato H. On the transient cavitation[J]. Journal of the Society of Naval Architects of Japan,1971,130: 51-62.(in Japanese)
[21] 佐藤恵一,角谷和人.キャビテーションの初生値計測に関する一検討[J].日本機械学會論文集:B編,1992,58(549):1349-1354.
Sato K, Kakutani K. A note on measurements of cavitation inception[J]. Transactions of JSME: Series B, 1992, 58(549): 1349-135.(in Japanese)
[22] Brennen C E. Fundamentals of Multiphase Flows[M]. Cambridge: Cambridge University Press, 2005: 100-102.
[23] Naylor O, Millward A. A method of predicting the effect of the dissolved gas content of water on cavitation inception[J]. Proceedings of IMechE:Part C, 1984, 198(12): 163-166.
[24] Daily J W, Johnson V E. Turbulence and boundary layer on cavitation inception for gas nuclei[J]. Transactions of ASME, 1956, 78: 1695-1706.
[25] 松浦良紀,谷林英毅.静置水の圧力逓減によるキャビテーションの初生:水中空気含有度と水温の影響[J].日本機械学會論文集:B編,1999,65(633):1658-1664.
Matsuura Y, Tanibayashi H. Cavitation inception in still water caused by gradually decreased static pressure(Effects of air content and temperature in water)[J]. Transactions of JSME: Series B, 1999, 65(633): 1658-1664.(in Japanese)
[26] Wade R B. Investigation on Cavitating Hydrofoils[D]. Pasadena, California, USA: California Institute of Technology, 1965.
[27] Wood D W, Hart R J, Marra E. Application guidelines for pumping liquids that have a large dissolved gas content[C]//Proceedings of the 1st International Pump Users Symposium. Texas A&M University, Texas, USA:[s.n.], 1983: 91-98.
[28] Budris A R, Mayleben P A. Effects of entrained air, NPSH margin and suction piping on cavitation in centrifugal pumps[C]//Proceedings of the 15th International Pump Users Symposium. Texas A&M University, Texas, USA:[s.n.], 1998: 99-107.
[29] Turley R S, Dickman D L, Parker J C, et al. Influence of gas seals on pump performance at low suction head condition[C]//Proceedings of the 17th International Pump Users Symposium. Texas A&M University, Texas, USA:[s.n.], 2000: 23-28.
[30] 中村研八,染谷常雄.実在液体に発生する張力に関する研究:潤滑油に対する応用[J].日本機械学會論文集:B編,1980,46(405):910-918.
Nakamura K, Someya T. Investigation into the tensile strength of real liquids: the application to lubricant oil[J]. Transactions of JSME: Series B, 1980, 46(405): 910-918.(in Japanese)
[31] 板谷松樹,河野一夫. 油中に溶解する空気の量[J]. 日本機械学會誌, 1945, 48(332/333): 75-77.
Itaya S, Kono K. Quantity of air absorbed in oil[J]. Journal of the JSME, 1945, 48(332/333): 75-77.(in Japanese)
[32] 石原智男.作動油のキャビテーション[J].日本機械学會論文集:B編,1982,48(434):1829-1832.
Ishihara T. Cavitation in hydraulic oil[J]. Transactions of JSME: Series B, 1982, 48(434): 1829-1832.(in Japanese)
[33] 李文广.离心泵输送黏油时必需汽蚀余量的CFD解析[J].水泵技术,2012(6):1-7,21.
[34]   Li Wenguang. CFD analysis of NPSH of a centrifugal pump when handling viscous oils[J]. Pump Technology, 2012(6): 1-7,21.(in Chinese)
[35] Singhal A K, Athavale M M, Li H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[36] 山崎堯右.細げき流路の油のキャビテーション発生条件に関する研究[J].日本機械学會論文集:B編,1981,47(418):976-980.
Yamasaki T. On the cavitation inception in oil flow through narrow passages[J]. Transactions of JSME: Series B, 1981, 47(418): 976-980.(in Japanese)
[37] Yamasaki T, Kamiyama S. Critical condition of cavitation occurrence in organic liquids[J]. Chemical Engineering Communications, 1984,30(1): 1-7.
[38] Washio S, Takahashi S, Uda Y, et al. Study on cavitation inception in hydraulic oil flow through a long two-dimensional constriction[J]. Proceedings of IMechE: Part J, 2001, 215(4): 373-386.
[39] Dunn P F, Thomas F O, Davis M O, et al. Experimental characterization of aviation-fuel cavitation[J]. Physics of Fluids, 2010, 22(11): 117102-1-17.
[40] Suh H K, Park S H, Lee C S. Experimental investigation of nozzle cavitating flow characteristics for diesel and biodiesel fuel[J]. International Journal of Automotive Technology, 2008, 9(2): 217-224.
[41] Suh H K, Lee C S. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1001-1009.
[42] Kubota A, Kato H, Yamaguchi H. A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 59-96.
[43] Giannadakis E, Gavaises M, Arcoumanis C. Modelling of cavitation in diesel injector nozzles[J]. Journal of Fluid Mechanics, 2008, 616: 153-193.
[44] Webster E. Cavitation[J]. Ultrasonics, 1963, 1(1): 39-48.
[45] Hayward A T J. The role of stabilized gas nuclei in hydrodynamic cavitation inception[J]. Journal of Physics D: Applied Physics, 1970, 3(4): 574-579.
[46] Crum L A. Nucleation and stabilization of microbubbles in liquids[J]. Applied Scientific Research, 1982, 38(1): 101-115.
[47] Turner W R. Microbubble persistence in fresh water[J]. Journal of the Acoustical Society of America, 1961, 33(9): 1223-1233.
[48] Morch K A. Cavitation nuclei and bubble formation—A dynamic liquid-solid interface problem[J]. Journal of Fluids Engineering, 2000, 122(3): 494-498.
[49] Kottke P A, Bair S A, Winer W O. Cavitation in creeping shear flows[J]. AIChE Journal, 2005, 51(8): 2150-2170.
[50] Joseph D D. Cavitation in a flowing liquid[J]. Physical Review E, 1995, 51(3): 1649-1650.
[51] Joseph D D. Cavitation and the state of stress in a flowing liquid[J]. Journal of Fluid Mechanics, 1998, 366: 367-378.
[52] Dabiri S, Sirignano W A, Joseph D D. Cavitation in an orifice flow[J]. Physics of Fluids, 2007, 19(7): 072112-1-9.
[1] 黄浩钦, 王勇, 刘厚林, 王文博, 郭豹. 叶片出口边侧斜对船用离心泵外辐射噪声的影响[J]. 排灌机械工程学报, 2015, 33(2): 104-110.
[2] 陈汇龙, 吴强波, 左木子, 徐成, 胡吉, 李述林. 机械密封端面液膜空化的研究进展[J]. 排灌机械工程学报, 2015, 33(2): 138-144.
[3] 王其磊. 多级离心泵转子固有频率影响因素的比较[J]. 排灌机械工程学报, 2015, 33(1): 31-36.
[4] 程效锐,, 张楠,, 赵伟国,. 双吸泵输送含沙水流时蜗壳内压力脉动特性[J]. 排灌机械工程学报, 2015, 33(1): 37-42.
[5] 周盼, 张权, 率志君, 李玩幽. 离心泵进水口形式设计及其对振动噪声的影响[J]. 排灌机械工程学报, 2015, 33(1): 16-19.
[6] 戴菡葳, 刘厚林, 丁剑, 谈明高, 王勇. 离心泵叶轮出口宽度对泵腔内压力脉动分布的影响[J]. 排灌机械工程学报, 2015, 33(1): 20-25.
[7] 王洋, 印刚, 王维军, 李贵东, 崔宇蕊. 低比转数恒扬程泵内部流场数值模拟[J]. 排灌机械工程学报, 2015, 33(1): 10-15.
[8] 王磊, 娄瑜, 王照福. 混流式模型水轮机空化流动分析与试验研究[J]. 排灌机械工程学报, 2014, 32(9): 771-775.
[9] 卢加兴, 袁寿其, 袁建平, 司乔瑞, 骆寅. 射流水冷结构对离心泵性能影响的试验研究[J]. 排灌机械工程学报, 2014, 32(9): 737-741.
[10] 李昳, 姜小军, 钱浩海. 黏度对凸轮转子泵效率影响的数值分析[J]. 排灌机械工程学报, 2014, 32(8): 669-673.
[11] 赵宇, 王国玉, 黄彪. 非定常空化流动涡旋特性分析[J]. 排灌机械工程学报, 2014, 32(8): 645-651.
[12] 曹卫东, 刘光辉, 刘冰. 两级离心泵径向导叶水力优化[J]. 排灌机械工程学报, 2014, 32(8): 663-668.
[13] 黄萍, 张丽, 周岭, 付燕霞, 陆伟刚. 向心径向导叶内部流场的多工况PIV测量[J]. 排灌机械工程学报, 2014, 32(8): 674-678.
[14] 何希杰, 张梦, 李学英. 低比转数泵扬程Ⅰ级、Ⅱ级与Ⅲ级影响因素排序[J]. 排灌机械工程学报, 2014, 32(7): 578-582.
[15] 周盼, 张权, 率志君, 李玩幽. 不同叶片数对离心泵流场诱导振动的影响[J]. 排灌机械工程学报, 2014, 32(7): 567-571.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved