排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2014, Vol. 32 Issue (8): 674-678    DOI: 10.3969/j.issn.1674-8530.13.1049
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
向心径向导叶内部流场的多工况PIV测量
黄萍1, 张丽2, 周岭1, 付燕霞1, 陆伟刚1
1.江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013; 2.格兰富水泵(无锡)有限公司, 江苏 无锡 214112
PIV measurements of inner flow field in an inward radial diffuser under multi-conditions
Huang Ping1, Zhang Li2, Zhou Ling1, Fu Yanxia1, Lu Weigang1
1.National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.Grundfos Holding A/S, Wuxi, Jiangsu 214112, China
 全文: PDF (1932 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了掌握导叶内部的真实流动形态,完善导叶水力设计方法,设计了一个独特的PIV试验台,对向心径向导叶内部流场进行了PIV试验测量.试验泵段取自多级深井离心泵的一级,通过2个高强度水润滑轴承支撑起整个泵轴,借助45°安放的镜面对流场图像进行折射.通过相平均方法获得了不同工况下导叶中截面的速度场分布.结果表明:在设计流量附近,导叶内部流动较为稳定规整;在大流量下,由于导叶进口过流面积有限,液体流动受阻,产生了较大的冲击损失;在小流量下,流道内产生了流动分离和旋涡,旋涡的强度随着流量的减小而逐渐加强,而且涡核的位置也由靠近导叶叶片吸力面逐渐向导叶流道中部移动;导叶进口处产生较大的水力损失,导叶进口安放角对泵性能影响较大;为改善小流量工况下的流场,导叶流道中部的过流面积需要进一步调整.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄萍
张丽
周岭
付燕霞
陆伟刚
关键词导叶   深井离心泵   试验   粒子图像测速   流场     
Abstract: In order to understand the flow pattern of the diffuser internal flow field and improve the diffuser hydraulic design method, a special test rig was designed and installed to investigate the flow fields in an inward radial diffuser by using the particle image velocimetry(PIV)technique. The test model is one stage of a deep-well multistage centrifugal pump, two water lubricated plain bearings were used to support the pump shaft, and a mirror placed in 45° was used to reflect the flow field of diffu-ser. The velocity flow fields under a variety of operational points were obtained by using the phase averaged method. The results show that the flow in the diffuser is uniform and stable at the design flow rate. At the larger flow rates, the flow is blocked by the finite throat area and a considerable shock loss is generated at the diffuser inlet. At the lower flow rates, flow separation and vortices appear, and the vortex intensity is strengthened with reducing flow rate. Meanwhile, the position of vortex core is mo-ving from the location nearby diffuser suction side to the middle of diffuser. Large hydraulic losses produce at the diffuser inlet, and the diffuser inlet setting angle have a significant effect on the pump performance. The flow area in the middle of diffuser passage needs to be further adjusted to improve the flow pattern under lower flow conditions.
Key wordsdiffuser   deep-well centrifugal pump   experiment   particle image velocimetry   flow field   
收稿日期: 2013-11-04;
基金资助:

国家自然科学基金资助项目(51279069);江苏省普通高校研究生科研创新计划资助项目(CXLX11_0577,CXLX11_0566)

通讯作者: 黄萍(1987—),女,江苏镇江人,硕士(huangping@ujs.edu.cn),主要从事离心泵现代设计方法研究.   
作者简介: 张丽(1987—),女,江苏靖江人,硕士(zhanglizhengjiang@126.com),主要从事离心泵优化设计研究.
引用本文:   
黄萍,张丽,周岭等. 向心径向导叶内部流场的多工况PIV测量[J]. 排灌机械工程学报, 2014, 32(8): 674-678.
HUANG Ping-,ZHANG Li-,ZHOU Ling- et al. PIV measurements of inner flow field in an inward radial diffuser under multi-conditions[J]. Journal of Drainage and Irrigation Machinery Engin, 2014, 32(8): 674-678.
 
[1] Golcu M, Pancar Y, Skmen Y. Energy saving in a deep well pump with splitter blade [J]. Energy Conversion Management,2006, 47(5): 638-651.
[2] Tushar G, Daniel J D, Raphael T H, et al. Improving the hydrodynamic performance of diffuser vanes via shape optimization [J]. Computers and Fluids, 2008,37(6): 705-723.
[3] Anokhin V D,Lepekha A I.New-type deep-well pump[J].Chemical and Petroleum Engineering, 1998,24(3/4):178-180.
[4] 孔繁余,宿向辉,陈浩,等. 离心泵径向导叶正叶片参数的优化设计[J].农业工程学报,2012,28(23):40-45.
Kong Fanyu,Su Xianghui,Chen Hao, et al. Optimal design on parameters of guide vane of radial diffusers in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):40-45.(in Chinese)
[5] 汪家琼,孔繁余. 多级离心泵叶轮与导叶水力性能优化研究[J].华中科技大学学报:自然科学版,2013,41(3):92-96.
Wang Jiaqiong, Kong Fanyu. Hydraulic performance optizimation study on impeller and diffuser of multi-stage centrifugal pump[J]. J Huanzhong Univ of Sci & Tech:Natural Science Edition, 2013,41(3):92-96.(in Chinese)
[6] Zhou L, Shi W D, Lu W G, et al. Numerical investigations and performance experiments of a deep-well centrifu-gal pump with different diffusers [J]. Journal of Fluids Engineering, 2012, 134(7): 0711021-0711028.
[7] Shi W D, Lu W G, Wang H L, et al. Research on the theory and design methods of the new type submersible pump for deep well [C]//Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting,2009: 91-97.
[8] Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry[J]. Journal of Fluids Engineering, 1994, 116(3):538-544.
[9] Eisele K, Zhang Z, Casey M V. Flow analysis in a pump diffuser—Part 1: LDA and PTV measurements of the unsteady flow[J]. Journal of Fluids Engineering, 1997, 119(4):968-977.
[10] Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes—I: On flow structures and turbulence[J]. Journal of Fluids Engineering, 2000, 122(1):97-107.
[11] Sinha M, Katz J, Meneveau C. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes—II: Addressing passage-averaged and large-eddy simulation modeling issues in turbomachinery flows[J]. Journal of Fluids Engineering, 2000, 122(1):108-116.
[12] Wuibaut G, Bois G, Dupont P, et al. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions[J]. Journal of Fluids Engineering, 2002, 124(3):791-797.
[13] 吴贤芳,刘厚林,王凯,等. 全工况下双流道泵内流三维PIV测量[J]. 排灌机械工程学报, 2012, 30(6): 665-669. 浏览
Wu Xianfang, Liu Houlin, Wang Kai,et al. 3D PIV measurement of flow in double-channel pump under overall operating conditions[J].Journal of Drainage and Irrigation Machinery Engineering, 2012,30(6):665-669.(in Chinese) 浏览
[1] 曹卫东, 刘光辉, 刘冰. 两级离心泵径向导叶水力优化[J]. 排灌机械工程学报, 2014, 32(8): 663-668.
[2] 施卫东, 李辉, 王川, 徐媛晖. 低比转数离心泵进口预旋的数值计算[J]. 排灌机械工程学报, 2014, 32(8): 652-657.
[3] 张泉泉, 李萍萍,, 朱长顺, 王纪章, 刘继展, 徐云峰. 立式螺旋开沟器土槽试验装置[J]. 排灌机械工程学报, 2014, 32(8): 725-729.
[4] 陈洋, 周大庆, 李玲玉, 陈世凡. 水动冷却塔直驱混流式水轮机转轮数值模拟优化[J]. 排灌机械工程学报, 2014, 32(7): 600-605.
[5] 袁寿其, 牛国平, 汤跃, 汤玲迪, 朱相源. JP50卷盘式喷灌机水涡轮水力性能的试验与模拟[J]. 排灌机械工程学报, 2014, 32(7): 553-557.
[6] 周盼, 张权, 率志君, 李玩幽. 不同叶片数对离心泵流场诱导振动的影响[J]. 排灌机械工程学报, 2014, 32(7): 567-571.
[7] 王文全, 尹锐, 闫妍. 不同雷诺数下混流式水轮机密封间隙通道内流动特征分析[J]. 排灌机械工程学报, 2014, 32(7): 611-616.
[8] 史凤霞, 杨军虎, 王晓晖. 导叶进出口角对能量回收水力透平性能的影响[J]. 排灌机械工程学报, 2014, 32(5): 378-381.
[9] 严海军, 王志鹏, 马开. 圆形喷灌机注肥泵的设计与试验研究[J]. 排灌机械工程学报, 2014, 32(5): 456-460.
[10] 张启华, 徐媛晖, 徐燕, 马栋棋, 郑炜, 连松锦, 陆伟刚. 150QJS20型精铸不锈钢深井泵的开发[J]. 排灌机械工程学报, 2014, 32(5): 382-387.
[11] 李娇娇, 张有忱. 基于Fluent的串接组合式迷宫螺旋泵数值模拟[J]. 排灌机械工程学报, 2014, 32(4): 296-301.
[12] 柴博森, 刘春宝, 王卫东. 基于霍夫变换的液力变矩器泵轮内部流速提取[J]. 排灌机械工程学报, 2014, 32(4): 283-289.
[13] 童菊秀, , 刘洋, , 孙怀卫. 土壤中Cr(Ⅵ)的地表径流迁移试验研究[J]. 排灌机械工程学报, 2014, 32(3): 271-276.
[14] 丛小青, 杨明, 陆伟刚, 陈冠男. 深井离心泵叶轮出口边斜度对水力性能的影响[J]. 排灌机械工程学报, 2014, 32(3): 214-219.
[15] 袁寿其, 张婷婷, 张金风, 刘建瑞, 裴冰. 汽车冷却水泵优化设计及试验研究[J]. 排灌机械工程学报, 2014, 32(2): 93-97.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved