排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2014, Vol. 32 Issue (7): 600-605    DOI: 10.3969/j.issn.1674-8530.14.0001
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水动冷却塔直驱混流式水轮机转轮数值模拟优化
陈洋, 周大庆, 李玲玉, 陈世凡
河海大学能源与电气学院, 江苏 南京 211100
Numerical simulation and hydrodynamics optimization of direct-drive Francis turbine runner in cooling towers
Chen Yang, Zhou Daqing, Li Lingyu, Chen Shifan
College of Energy and Electrical Engineering, Hohai University, Nanjing, Jiangsu 211100, China
 全文: PDF (1393 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对比转数仅有54的水动冷却塔直驱混流式水轮机,选取影响水轮机转轮效率的6个重要水力参数β12,b0/D1,Φ/D1,Z,a/D1,每个因素取2个水平,设计L8(27)正交表,生成8个设计方案.通过CFD软件分别对8个方案的水轮机进行全流道数值模拟,采用理论分析和CFD技术分析转轮水力损失特性,对比其结果、优化转轮参数,再将优化后方案进行数值模拟和外特性试验,对比得到的结果,表明使用正交化方法结合CFD技术可在较少的试验方案下有效地改进水轮机叶轮水力性能,达到水轮机优化设计的目的.在设计流量点Q为5 000 t/h处,优化后的模型转轮输出功率为156.57 kW,水轮机效率达到86.51%;数值模拟效率比试验效率低0.11%,实测结果的基本趋势与数值模拟结果相一致.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈洋
周大庆
李玲玉
陈世凡
关键词转轮   水动冷却塔   混流式水轮机   L8(27)正交表   数值模拟   外特性试验     
Abstract: For a Francis turbine with a specific speed of just ns=54 used in cooling towers, six design parameters of runner such as β1, β2, b0/D1, Φ/D1, Z and a/D1 which may have effects on the turbine performance are selected, then eight design cases are generated by using orthogonal experimental design array L8(27)in which there are two levels for each factor. The steady 3D turbulent incompressible fluid flow is simulated for each design by means of a CFD package, consequently the hydraulic loss characte-ristics of the runners are analyzed, and the design parameters are optimized. The performance of the optimized runner is predicted and measured. The predicted output power and efficiency of the turbine with the optimized runner are 156.57 kW and 86.51% respectively at the design point(Q=5 000 t/h), showing just 0.11% lower than the measurement of efficiency. This suggests that orthogonal design array combined with CFD technique can help reduce the number of design cases and improve the hydraulic performance of turbine runner effectively so as to realize its hydrodynamics optimization.
Key wordsrunner   cooling tower   francis turbine   L8(27)   numerical simulation   exterior characteristic test   
收稿日期: 2014-01-06;
基金资助:国家自然科学基金资助项目(51106042)
通讯作者: 陈洋(1988—),男,重庆涪陵人,硕士研究生(chensponge@163.com),主要从事流体机械及水利水电工程研究.   
作者简介: 周大庆(1976—),男,浙江泰顺人,副教授,硕士生导师(zhoudaqing@hhu.edu.cn),主要从事流体机械及工程研究.
引用本文:   
陈洋,周大庆,李玲玉等. 水动冷却塔直驱混流式水轮机转轮数值模拟优化[J]. 排灌机械工程学报, 2014, 32(7): 600-605.
CHEN Yang,ZHOU Da-Qing,LI Ling-Yu et al. Numerical simulation and hydrodynamics optimization of direct-drive Francis turbine runner in cooling towers[J]. Journal of Drainage and Irrigation Machinery Engin, 2014, 32(7): 600-605.
 
[1] 李延频, 南海鹏, 陈德新. 冷却塔专用水轮机的工作特性与选型[J]. 水力发电学报, 2011, 30(1): 175-179.
Li Yanpin, Nan Haipeng, Chen Dexin. Performance and type selection of special hydraulic turbine in cooling tower[J]. Journal of Hydroelectric Engineering, 2011,30(1):175-179.(in Chinese)
[2] 张丽敏, 郑源, 张成华, 等. 用于冷却塔的超低比转数混流式水轮机设计[J]. 农业机械学报, 2010,41(S0): 39-42.
Zhang Limin, Zheng Yuan, Zhang Chenghua, et al. Study on francis turbine with super-low specific speed applied in cooling towers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(S0):39-42.(in Chinese)
[3] 黄剑峰, 张立翔, 何士华. 混流式水轮机全流道三维定常及非定常流数值模拟[J]. 中国电机工程学报, 2009,29(2):87-94.
Huang Jianfeng, Zhang Lixiang, He Shihua. Numerical simulation of 3-D steady and unsteady flows in whole flow passage of a Francis Hydro-turbine[J]. Procee-dings of the CSEE, 2009,29(2):87-94.(in Chinese)
[4] Khare R, Prasad D V, KUMAR D S. CFD approach for flow characteristics of hydraulic Francis Turbine[J]. International Journal of Engineering Science and Technology, 2010,2(8):3824-3831.
[5] 辛喆,吴俊宏,常近时. 混流式水轮机的三维湍流流场分析与性能预测[J]. 农业工程学报,2010,26(3):118-124.
Xin Zhe, Wu Junhong, Chang Jinshi. Flow field analysis and performance prediction of three-dimensional turbulent flow in Francis Turbine[J]. Transactions of the CSAE, 2010,26(3):118-124.(in Chinese)
[6] Laín S, García M, Quintero B, et al. CFD numerical simulations of Francis Turbines[J]. Revista Facultad de Ingenieria Universidad de Antioquia, 2010(51): 24-33.
[7] Jain S, Saini R P, Kumar A. CFD approach for prediction of efficiency of Francis Turbine[EB/OL]. [2014-01-09]. http://www.ahec.org.in/links/IGHEM-2010/Papers/TSF-04.pdf.
[8] Nicolle J, Labbé P, Gauthier G, et al. Impact of blade geometry differences for the CFD performance analysis of existing turbines[C]//Proceedings of IOP Conference Series: Earth and Environmental Science. Bristol, UK: IOP Publishing, 2010,12(1):012028.
[9] Anagnostopoulos J S. A fast numerical method for flow analysis and blade design in centrifugal pump impellers[J]. Computers & Fluids, 2009,38(2): 284-289.
[10] 齐学义,刘永明,胡家旺,等. 提高超低比转数离心泵效率的方法[J]. 水电能源科学,2011,29(2):118-120.
Qi Xueyi, Liu Yongming, Hu Jiawang, et al. Method of improving efficiency of low specific speed centrifugal pump[J]. Water Resources and Power, 2011,29(2):118-120.(in Chinese)
[11] 陈有志,李刚,王景辉. 改善低比转数离心泵水力性能的几种方法[J]. 防爆电机, 2005,40(3):46-48.
Chen Youzhi, Li Gang, Wang Jinghui. Several methods for improving the hydraulic properties of low-speed ratio centrifugal pumps[J]. Explosion-Proof Electric Machine, 2005,40(3):46-48.(in Chinese)
[12] 沈艳宁, 袁寿其, 陆伟刚, 等. 复合叶轮离心泵数值模拟正交试验设计方法[J]. 农业机械学报, 2010,41(9):22-26.
Shen Yanning, Yuan Shouqi, Lu Weigang, et al. Orthogonal test design method based on numerical simulation for non-overload centrifugal pump with complex impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(9):22-26.(in Chinese)
[13] 董如何, 肖必华, 方永水. 正交试验设计的理论分析方法及应用[J]. 安徽建筑工业学院学报:自然科学版,2004,12(6):103-106.
Dong Ruhe, Xiao Bihua, Fang Yongshui. The theoretical analysis of orthogonal teat designs[J]. Journal of Anhui Institute of Architecture & Industry: Natural Science, 2004,12(6):103-106.(in Chinese)
[14] 袁寿其, 张金凤, 袁建平, 等. 用正交试验研究分流叶片主要参数对性能影响[J]. 排灌机械, 2008,26(2):1-5.
Yuan Shouqi, Zhang Jinfeng, Yuan Jianping, et al. Orthogonal experimental study effect of main geometry factors of splitter blades on pump performance[J]. Drai-nage and Irrigation Machinery, 2008,26(2):1-5.(in Chinese)
[15] 赵亚萍,廖伟丽,李志华,等. C型及S型叶片的贯流式水轮机流场特性[J]. 农业工程学报,2013,29(17):47-53.
Zhao Yaping, Liao Weili, Li Zhihua, et al. Flow field performance of bulb turbine with C-type or S-type blades[J]. Transactions of the CSAE, 2013,29(17):47-53.(in Chinese)
[1] 徐茂森,, 龙新平,, 杨雪龙,, 吴伟,, 王晓川,, 王雪颖,. 喷嘴位置对新型环形射流泵性能的影响[J]. 排灌机械工程学报, 2014, 32(7): 563-566.
[2] 王文全, 尹锐, 闫妍. 不同雷诺数下混流式水轮机密封间隙通道内流动特征分析[J]. 排灌机械工程学报, 2014, 32(7): 611-616.
[3] 田飞, 施卫东, 卢熙宁, 张德胜, 郎涛. 潜水搅拌机内部压力脉动特性分析[J]. 排灌机械工程学报, 2014, 32(7): 606-610.
[4] 罗欣, 郑源, 张新. 轴流泵马鞍区流场流固耦合数值模拟[J]. 排灌机械工程学报, 2014, 32(6): 466-471.
[5] 王煜, 戴会超,, 毛劲乔, 彭秀华. 葛洲坝大江泄流对中华鲟产卵场空间分布特征的影响[J]. 排灌机械工程学报, 2014, 32(6): 487-493.
[6] 史凤霞, 杨军虎, 王晓晖. 导叶进出口角对能量回收水力透平性能的影响[J]. 排灌机械工程学报, 2014, 32(5): 378-381.
[7] 毛劲乔,, 李智, 戴会超,, 柯云. 水库调度影响下中华鲟产卵场的水动力特征[J]. 排灌机械工程学报, 2014, 32(5): 399-403.
[8] 施卫东, 张光建, 张德胜, 吴苏青, 徐焰栋. 入口非均匀流对轴流泵性能和压力脉动的影响[J]. 排灌机械工程学报, 2014, 32(4): 277-282.
[9] 龙云, 朱荣生, 付强, 袁寿其, 习毅. 核主泵小流量工况下不稳定流动数值模拟[J]. 排灌机械工程学报, 2014, 32(4): 290-295.
[10] 李娇娇, 张有忱. 基于Fluent的串接组合式迷宫螺旋泵数值模拟[J]. 排灌机械工程学报, 2014, 32(4): 296-301.
[11] 李鲁辉, 肖聚亮, 莫振伟, 王刚, 王国栋. 筒阀动水关闭过程中下边缘形状对流场的影响[J]. 排灌机械工程学报, 2014, 32(4): 327-332.
[12] 张玉新, 王秀叶, 丁鹏, 唐学林. 潜水轴流泵内部流场压力脉动的数值模拟[J]. 排灌机械工程学报, 2014, 32(4): 302-307.
[13] 刘栋, 朱鹣, 王颖泽, 杨晓勇, 王春林. 沟槽壁面对泰勒涡流稳定性影响的数值模拟[J]. 排灌机械工程学报, 2014, 32(3): 242-246.
[14] 付燕霞,, 袁寿其, 袁建平, 付跃登, 黄萍. 离心泵小流量工况下的内部流动特性[J]. 排灌机械工程学报, 2014, 32(3): 185-190.
[15] 施卫东, 徐燕, 张启华, 王国涛, 陆伟刚, 马栋棋. 多级潜水泵内部压力脉动特性[J]. 排灌机械工程学报, 2014, 32(3): 196-201.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved