排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2014, Vol. 32 Issue (6): 472-476    DOI: 10.3969/j.issn.1674-8530.13.0067
最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于流固耦合的离心泵蜗壳结构分析与优化
王海宇, 张德胜, 施卫东, 张磊
江苏大学国家水泵及系统工程技术研究中心, 江苏 镇江 212013
Analysis and optimization of structure in centrifugal pump based on fluid-structure interaction
Wang Haiyu, Zhang Desheng, Shi Weidong, Zhang Lei
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China
 全文: PDF (2103 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了研究蜗壳和超厚离心泵叶片匹配时的应力分布和变形,采用单向流固耦合方法对3种蜗壳结构产生的变形、等效应力和模态进行了数值分析和优化.蜗壳基圆直径与叶轮直径的比值(D3/D2)是蜗壳结构动力特性的主要影响因素,所以选取不同的D3/D2设计方案,进行数值模拟.D3/D2较小时(方案A),超厚叶片出口的射流-尾迹现象导致蜗壳流道内压力分布不均匀,其诱导的蜗壳变形量较大;随着D3/D2逐渐增大(方案B,C),蜗壳的动力特性参数数值明显减弱,且数值趋于稳定.在设计工况下,方案A变形量最大值为544 μm,等效应力最大值为15.7 MPa;方案B和方案C最大变形量分别降低为方案A的2.6%,2.8%,最大等效应力分别降为方案A的14.8%,22.9%.数值计算结果表明,3组对比方案中,方案B和方案C的结构动力特性相近,方案B的各指标最好,其运行可靠性更高.因此推荐具有超厚叶片的离心泵蜗壳D3/D2取1.13(方案B所取值)左右,以获得较优的结构动力特性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海宇
张德胜
施卫东
张磊
关键词离心泵   蜗壳   单向流固耦合   等效应力   优化设计     
Abstract: In order to optimize the matching of impeller with extra-thick blades and volute in a centri-fugal pump, the structure displacement, equivalent stress and modes of different volutes were simulated by one-way coupling Fuild-Structure Interaction method. The ratio between basic circle diameter of volute and impeller diameter(D3/D2)is the main impact on the dynamic characteristics of volute, so it was chosen to design the simulation. When D3/D2 is small(case A), the un-uniform velocity distribution induced by jet-wake in blade outlet leads to the strong pressure pulsation and vibration of volute. However, dynamic parameters are weakened and tend to be stable when the ratio D3/D2 gradually increases(case B,C). Under the design conditions, the maximum displacement in case A is 544 μm, and the maximum equivalent stress is 15.7 MPa. In case B and C, the maximum displacement is reduced to 2.6%, 2.8% of case A, respectively, and the maximum equivalent stress is reduced to 14.8%, 22.9%, respectively. The numerical results of the three cases show that case A and B have similar dynamic characteristics, while case B is more stable. Consequently, it is recommended that, D3/D2 should be plausible around 1.13,which is chosen in case B, in designing a volute of centrifugal pumps with extra thick blades, for a good dynamic characteristics. 
Key wordscentrifugal pump   volute   fluid-struture interaction   equivalent stress   optimal design   
收稿日期: 2013-02-04;
基金资助:国家科技支撑计划(2012BAB17B02-4,2011BAF14B01);江苏省产学研联合创新资金是瞻性联合研究项目(BY2013065-03);江苏省普通高校研究生科研创新计划项目(CXLX13_661)
通讯作者: 王海宇(1989—),男,江苏大丰人,硕士研究生(675600552@qq.com),主要从事流体机械内部流动分析研究.   
作者简介: 张德胜(1982—),男,江苏南通人,副研究员,博士(zds@ujs.edu.cn),主要从事流体机械设计理论及流动特性研究.
引用本文:   
王海宇,张德胜,施卫东等. 基于流固耦合的离心泵蜗壳结构分析与优化[J]. 排灌机械工程学报, 2014, 32(6): 472-476.
WANG Hai-Yu,ZHANG De-Sheng,SHI Wei-Dong et al. Analysis and optimization of structure in centrifugal pump based on fluid-structure interaction[J]. Journal of Drainage and Irrigation Machinery Engin, 2014, 32(6): 472-476.
 
[1] Zhang Desheng, Shi Weidong, Chen Bin, et al. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of Hydrodynamics: Ser B, 2010, 22(1): 35-44.
[2] 袁寿其,王新坤. 我国排灌机械的研究现状与展望[J]. 农业机械学报, 2008,39(10): 52-58.
Yuan Shouqi, Wang Xinkun. Present research situation and perspective of drainage and irrigation machinery in China [J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(10):52-58.(in Chinese)
[3] 张磊.潜水排污泵叶轮与蜗壳间隙对振动特性影响的研究[D].镇江: 江苏大学流体机械工程技术研究中心, 2012.
[4] Dong R, Chu S, Katz J. Effect of modification to tongue and impeller geometry on unsteady flow,pressure fluctua-tions, and noise in a centrifugal pump[J]. Journal of Fluids Engineering,1997, 119:506-515.
[5] Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump—Part A: Use of PDV DATA to compute the pressure field[J]. Journal of Fluids Engineering, 1995, 117: 24-29.
[6] 裴吉.基于流固耦合的离心泵流动诱导振动特性数值研究[D].镇江: 江苏大学流体机械工程技术研究中心, 2009.
[7] 倪永燕.离心泵非定常湍流场计算及流体诱导振动研究[D].镇江:江苏大学流体机械工程技术研究中心,2008.
[8] 施卫东,郭艳磊,张德胜,等. 大型潜水轴流泵转子部件湿模态数值模拟[J]. 农业工程学报, 2013,29(24): 72-78.
Shi Weidong, Guo Yanlei, Zhang Desheng, et al. Numerical simulation on modal oflarge submersible axial-flow pump[J]. Transactions of the CSAE, 2013,29(24): 72-78.(in Chinese)
[9] 王洋,王洪玉,张 翔,等.基于流固耦合理论的离心泵冲压焊接叶轮强度分析[J].农业工程学报,2011,27(3):131-136.
Wang Yang, Wang Hongyu, Zhang Xiang, et al. Strength analysis on the stamping and welding impeller in centrifugal pump based on fluid-structure interaction theorem[J]. Transactions of the CSAE, 2011, 27(3): 131-136.(in Chinese)
[10] 陈向阳,袁丹青,杨敏官,等. 基于流固耦合方法的300 MWe级反应堆主泵叶片应力分析[J].机械工程学报,2010,46(4):111-115.
Chen Xiangyang,Yuan Danqing, Yang Minguan,et al. Blade stress of the reactor coolant pump of 300 MWe nuclear power plant in China based on fluid-solid coupling method[J]. Journal of Mechanical Engineering,2010,46(4):111-115.(in Chinese)
[11] 施卫东,蒋婷,曹卫东,等. 高扬程无过载潜水排污泵的优化设计与试验[J].农业工程学报,2011,27(5):151-155.
Shi Weidong, Jiang Ting, Cao Weidong, et al. Optimal design and experiment on a high-head non-overload submersible sewage pump [J]. Transactions of the CSAE, 2011, 27(5): 151-155.(in Chinese)
[12]   
[13] 陈斌,张华,施卫东,等. 超厚叶片低比转数无过载排污泵数值计算与PIV实验[J].农业机械学报,2012,43(5):74-78.
Chen Bin, Zhang Hua, Shi Weidong, et al. Numerical calculation and experiment of non-overload low specific speed sewage pump with super-thick blades[J].Transactions of the Chinese Society for Agricultural Machinery,2012,43(5):74-78.(in Chinese)
[14] 施卫东,张磊,陈斌,等. 离心泵间隙对压力脉动及径向力的影响[J].排灌机械工程学报,2012,30(3):260-264. 浏览
Shi Weidong, Zhang Lei, Chen Bin, et al. Influence of gap on pressure pulsation and radial force in centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2012,30(3):260-264.(in Chinese) 浏览
[15] 张德胜,施卫东,陈斌,等.高扬程潜水排污泵叶轮和蜗壳的匹配优化与试验[J].农业工程学报, 2013, 29(1): 78-85.
Zhang Desheng, Shi Weidong, Chen Bin, et al. Experiment and impeller and volute matching optimization of high-head submersible sewage pump[J]. Transactions of the CSAE, 2013,29(1): 78-85.(in Chinese)
[16] Souli M. Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(3): 451-466.
[17] Braess Henning, Peter Wriggers. Arbitrary Lagrangian Eulerian finite element analysis of free surface flow[J]. Computer Methods in Applied Mechanics and Enginee-ring, 2000, 190(1): 95-109.
[1] 杨勇, 蒋文萍, 杨昆, 陈小东, 胡铁刚, 谢蓉, 龚路远. 基于CFD的汽车水泵优化设计[J]. 排灌机械工程学报, 2014, 32(6): 477-481.
[2] 付燕霞,, 袁寿其, 袁建平, 付跃登, 黄萍. 离心泵小流量工况下的内部流动特性[J]. 排灌机械工程学报, 2014, 32(3): 185-190.
[3] 杨帅, 姜新阔, 吴大转, 王乐勤. 离心泵通用自动化测试控制技术[J]. 排灌机械工程学报, 2014, 32(3): 191-195.
[4] 丛小青, 杨明, 陆伟刚, 陈冠男. 深井离心泵叶轮出口边斜度对水力性能的影响[J]. 排灌机械工程学报, 2014, 32(3): 214-219.
[5] 钱忠东, 张凯, 王志远, 薛军. 双吸式离心泵叶片头部形状对泥沙磨损的影响[J]. 排灌机械工程学报, 2014, 32(2): 103-107.
[6] 权辉, 李仁年, 苏清苗, 韩伟, 程效锐, 申正精. 单介质螺旋离心泵能量转换机理[J]. 排灌机械工程学报, 2014, 32(2): 130-135.
[7] 杨军虎, 李海龙, 龚朝晖, 夏书强, 罗凯凯. 离心泵反转作液力透平的力学特性[J]. 排灌机械工程学报, 2014, 32(1): 12-16.
[8] 杨爱玲, 徐洋, 李国平, 章艺. 叶片载荷对离心泵内流动激励力及噪声的影响[J]. 排灌机械工程学报, 2014, 32(1): 23-28.
[9] 刘宜,, 蒋跃, 韩正杰. HD型石油化工流程泵内部固液两相分布规律[J]. 排灌机械工程学报, 2013, 31(9): 758-762.
[10] 王洋, 王振伟, 王维军, 叶道星. 叶轮注塑成型模拟及工艺参数优化[J]. 排灌机械工程学报, 2013, 31(9): 747-751.
[11] 王桃,, 孔繁余, 何玉洋, 杨孙圣. 离心泵作透平的研究现状[J]. 排灌机械工程学报, 2013, 31(8): 674-680.
[12] 陈红勋,, 林育战, 朱兵. 缝隙引流叶轮离心泵空化试验研究[J]. 排灌机械工程学报, 2013, 31(7): 570-574.
[13] 袁寿其, 衡亚光, 洪锋, 袁建平, 司乔瑞, 胡博. 2种隔舌模型对离心泵性能模拟的影响[J]. 排灌机械工程学报, 2013, 31(7): 553-557.
[14] 袁寿其, 衡亚光, 洪锋, 袁建平, 司乔瑞, 胡博. 2种隔舌模型对离心泵性能模拟的影响[J]. 排灌机械工程学报, 2013, 31(7): 553-557.
[15] 李述林, 肖若富, 王文平, 潘潇, 陶然. 某型加油泵性能优化[J]. 排灌机械工程学报, 2013, 31(6): 471-474.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved