排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2014, Vol. 32 Issue (1): 33-39    DOI: 10.3969/j.issn.1674-8530.13.0069
水利水电工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于数字图像的水位识别系统及其方法
徐兴1,2,3, 洪添胜1,2,3, 岳学军1,2,3,4, 蔡坤1,2,3, 黄双萍1,2,3, 刘永鑫1,2,3
1.华南农业大学南方农业机械与装备关键技术教育部重点实验室, 广东 广州 510642; 2.华南农业大学国家柑橘产业技术体系机械研究室, 广东 广州 510642; 3.华南农业大学工程学院, 广东 广州 510642; 4.南昆士兰大学工程与测绘学院, 澳大利亚 图文巴QLD4350
Digital image-based water level recognizing system and method
Xu Xing1,2,3, Hong Tiansheng1,2,3, Yue Xuejun1,2,3,4, Cai Kun1,2,3, Huang Shuangping1,2,3, Liu Yongxin1,2,3
1.Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China; 2.Division of Citrus Machinery, China Agriculture Research System, Guangzhou, Guangdong 510642, China; 3.College of Engineering, South China Agricultural University, Guangzhou, Guangdong 510642, China; 4.Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba QLD4350, Australia
 全文: PDF (1847 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了有效监控水情,给水利和农业生产灌溉提供及时有效的指导信息,设计了一种基于数字图像的水位识别系统.该系统将红色的球形浮标置于垂直于水面的固定杆上,水位变化引起球形浮标上下变化,所拍摄图像上浮标的相对位置也出现变化,从而可通过图像处理获得水位信息.针对所设计的水位识别系统,提出基于红色色域和球形特征的自适应球形浮标目标提取算法和球心坐标计算和校正算法,用以求得浮标球心的准确坐标位置,并通过球心坐标和水位之间的换算公式,最终计算得到当前水位高度数据.现场试验结果表明,在采用6.0×106 pixel摄像头,拍摄高度为71 cm,摄像头和固定杆距离为282 cm的条件下,该系统最大测量误差为0.216 91 cm,低于国标(GB/T 50138—2010)所规定的1 cm误差.该系统无需专用昂贵的水位计或复杂的传感器技术,成本较低;以浮标为检索目标,使此法不受水温、水质、含沙量等外界干扰因素的影响,适用性更强;系统组成简单,安装方便,易于使用.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐兴
洪添胜
岳学军
蔡坤
黄双萍
刘永鑫
关键词水位监测   浮球特征   球心位置   数字图像处理     
Abstract: In order to monitor water level efficiently and provide instantaneous and effective information for guiding water conservancy and agriculture irrigation, a digital image-based water level recognizing system was designed. In the system, a red spherical buoy was installed on a rod which was fixed vertically in water. Since the water level was derived by change in the relative position of buoy, the water level information could be specified by processing the buoy images snatched by a digital camera. For an instantaneous water level could be obtained through a conversion formula between the spherical centre coordinates and the height of water level, an adaptive spherical buoy capturing algorithm for identifying the red region and extracting the characteristics of red sphere and a calculation and correction algorithm for the sphere centre coordinates were proposed. It was shown experimentally that the maximum error in measurement was 0.216 91 cm, which is far below 1cm error specified in the new edition of China National Standard(GB/T 50138—2010)under 6 megapixel camera, 71 cm shoot height, and 282 cm distance between the camera and the fixed rod. Importantly, the system needs no expansive water level gauge or complex sensors and is subject to a relatively low cost. Additionally, the system relies on non-contact measurement only, and unnecessarily affected by interference factors, such as water temperature, quality, sediment etc. This innovative system has a simple structure, can be installed conveniently and used easily, and it has an even better feasibility in water level monitoring sector.
Key wordswater level measurement   spherical buoy feature   spherical center   digital image process   
收稿日期: 2013-02-04;
基金资助:

教育部博士点基金资助项目(20124404120002);广东高校优秀青年创新人才培育项目(LYM10035);广东省农业机械化科研项目(粤农计[2013]2号)

通讯作者: 徐兴(1978—),男,江西宁都人,博士(xuzhexing@163.com),主要从事无线传感器网络,现代智能信息处理技术研究.   
作者简介: 岳学军(1971—),女,重庆南岸人,副教授,博士(通信作者,yuexuejun@scau.edu.cn),主要从事农业工程、机电一体化和信息技术应用研究.
引用本文:   
徐兴,,洪添胜等. 基于数字图像的水位识别系统及其方法[J]. 排灌机械工程学报, 2014, 32(1): 33-39.
XU Xing-,,HONG Tian-Sheng- et al. Digital image-based water level recognizing system and method[J]. Journal of Drainage and Irrigation Machinery Engin, 2014, 32(1): 33-39.
 
[1] 陈立辉, 许伟强, 何青. 混合式水位测量方法的探究[J].水利信息化, 2012(1):55-59,72.
[2] Chen Lihui, Xu Weiqiang, He Qing. Research on an integrated measurement for water level[J]. Water Resources Informatization, 2012(1):55-59,72.(in Chinese)
[3] 郑国伟,齐虹,林瑞全. 基于AT89S52单片机的双水箱水位控制系统设计[J]. 闽江学院学报, 2012, 33(2):77-81.
Zheng Guowei,Qi Hong,Lin Ruiquan. The design of double water tank level control system on AT89S52 single-chip[J]. Journal of Minjiang University, 2012, 33(2):77-81.(in Chinese)
[4] 林瑞凤,徐海. 基于图像传感器的明渠水位自动测量方法[J].传感器与微系统, 2013, 32(8):53-55.
Lin Ruifeng, Xu Hai. Automatic measurement method for canals water level based on imaging sensor[J]. Transducer and Microsystem Technologies, 2013, 32(8):53-55.(in Chinese)
[5] 任明武,杨万扣,王欢, 等. 一种基于图像的水位自动测量新方法[J]. 计算机工程与应用, 2007,43(22):204-206.
Ren Mingwu, Yang Wankou, Wang Huan, et al. New algorithm of automatic water level measurement based on image processing[J]. Computer Engineering and Applications, 2007,43(22):204-206.(in Chinese)
[6] 姜晓玉, 花再军. 基于图像处理的水位自动读取[J]. 电子设计工程, 2011,19(23):23-25.
Jiang Xiaoyu, Hua Zaijun. Water-level auto reading based on image processing[J]. Electronic Design Engineering, 2011,19(23):23-25.(in Chinese)
[7] Li Huiping, Wang Wei, Ma Fuchang, et al. The water level automatic measurement technology based on image processing[J]. Applied Mechanics and Materials, 2013,303/304/305/306:621-626.
[8] Poncos V, Teleaga D, Bondar C, et al. A new insight on the water level dynamics of the Danube Delta using a high spatial density of SAR measurements[J]. Journal of Hydrology, 2013,482:79-91.
[9] Wdowinski S, Kim Sang-Wan, Amelung F, et al. Space-based detection of wetlands′ surface water level changes from L-band SAR interferometry[J]. Remote Sensing of Environment, 2008,112(3):681-696.
[10] Li Xiuhong, Cheng Xiao, Gong Peng, et al. Design and implementation of a wireless sensor network-based remote water-level monitoring system[J]. Sensors, 2011,11(2):1706-1720.
[11] Singh I, Bansal M. Monitoring water level in agriculture using sensor networks[J]. International Journal of Soft Computing and Engineering, 2011,1(5):202-204.
[12] 程琴,任海东.基于ZigBee的水库水位监测及远程控制系统[J].现代电子技术, 2013,36(13):68-70.
Cheng Qin, Ren Haidong. System of reservoir level monitoring and remote control based on ZigBee[J]. Mo-dern Electronics Technique, 2013,36(13):68-70.(in Chinese)
[13] 高晓亮, 王志良, 王馨, 等. 基于HSV空间的视频实时水位检测算法[J]. 郑州大学学报:理学版, 2010,42(3):75-79.
Gao Xiaoliang, Wang Zhiliang, Wang Xin, et al. An algorithm of real-time water level detection via video based on HSV space[J]. Journal of Zhengzhou University: Natural Science Edition, 2010,42(3):75-79.(in Chinese)
[14] 王晓红, 孙平, 徐卓, 等. 基于模式识别技术的色貌模型评价研究[J]. 光学技术,2012,38(5):573-578.
Wang Xiaohong, Sun Ping, Xu Zhuo, et al. The research of color appearance models evaluation based on pattern recognition technology[J]. Optical Technique, 2012,38(5):573-578.(in Chinese)
[15] 马林兰. 视觉与色彩[J]. 长春大学学报, 2004,14(1):93-94.
Ma Linlan. Sight and colour[J]. Journal of Changchun University, 2004,14(1):93-94.(in Chinese)
[16] 刘奇琦, 龚晓峰. 一种二值图像连通区域标记的新方法[J]. 计算机工程与应用, 2012,48(11):178-180.
Liu Qiqi, Gong Xiaofeng. New algorithm for binary connected component labeling[J]. Computer Engineering and Applications, 2012,48(11):178-180.(in Chinese)
[1] 蒋小平, 施卫东, 李伟, 刘厚林, 谈明高. 基于工业CT的水泵叶轮体绘制法三维重建[J]. 排灌机械工程学报, 2011, 29(6): 487-491.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved