排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2014, Vol. 32 Issue (1): 23-28    DOI: 10.3969/j.issn.1674-8530.12.1530
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
叶片载荷对离心泵内流动激励力及噪声的影响
杨爱玲1, 徐洋1, 李国平2, 章艺2
1.上海理工大学能源与动力工程学院, 上海 200093; 2.中国船舶重工集团公司第704研究所, 上海 200031
Effect of blade loading on fluid-induced exciting force and noise in centrifugal pumps
Yang Ailing1, Xu Yang1, Li Guoping2, Zhang Yi2
1.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2.704th Research Institute, China Shipbuilding Industry Corporation, Shanghai 200031, China
 全文: PDF (1316 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于大涡模拟技术和边界元方法分析离心泵内非定常流场及流动诱导的结构振动与噪声,研究叶片载荷对离心泵水力性能、流动激励力及流动噪声的影响.数值计算结果表明:相比于低叶片载荷的离心泵,高叶片载荷离心泵的水力效率提高了1.1%~2.9%,流场分布更均匀;相同工况下高叶片载荷离心泵的蜗舌压力脉动系数幅值比低叶片载荷泵高42.6%;叶轮受到的径向力脉动幅度也提高了7.63%;根据声场计算结果,蜗壳壁面振动速度在二阶叶频上最大,高叶片载荷离心泵蜗壳的最大振动速度是低叶片载荷离心泵的5~6倍;蜗壳振动向外辐射噪声的指向性分布也发生了变化,在10°~310°范围内高叶片载荷泵辐射的噪声声压级大于低叶片载荷泵.研究表明叶片载荷是影响离心泵内流动激励力和流动诱导振动与噪声的重要因素,低噪声低振动水泵的设计需综合考虑水力效率与泵内流动激励力.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨爱玲
徐洋
李国平
章艺
关键词离心泵   叶片载荷   流动激励力   大涡模拟   流动噪声   声振耦合     
Abstract: The unsteady three-dimensional turbulent flow fields in two centrifugal pumps are analyzed by using large eddy simulation method, then the structure vibration of the volute and the noise induced by the unsteady pressure are simulated with boundary element method. The pumps have an identical volute, impeller outlet diameter, blade outlet width, duty head and flow rate and rotational speed but different blade loadings. The hydraulic efficiency, flow field characteristics, pressure pulsation, volute vibration features and radiated noise from the pump are compared to investigate effects of the loading on hydraulic performance and fluid-induced exciting force. The results show that the hydraulic efficiency of the pump with the higher blade loading is not only 1.1%-2.9% better than that with the lower loading, but also has a more uniform flow field. The unsteady pressure on the wet surfaces of the volute and the exciting force applied on the impellers at blade passing frequency are dominated. The amplitude of pressure fluctuation in the pump with the higher blade loading is so remarkable that the maximum pressure fluctuation amplitude at the volute tongue is 42.6% higher compared with that in the pump with the lower loading. Likewise, the magnitude of unsteady radial thrust fluctuation on the pump with the higher blade loading is increased by 7.63% as well. The maximum vibration velocity and acceleration of the volute in the pump with the higher blade loading at the 2nd harmonic frequency is 5-6 times the frequency in the pump with the lower blade loading. Note that the directivity pattern of noise also shows an obvious difference in the two pumps, particularly, the sound pressure level from the pump with the higher blade loading is more violent than that with the lower loading in the range of 10°-310° polar angle. These results suggest that blade loading is an important factor that affects the exciting force and subsequently alters fluid-induced noise from a centrifugal pump. In addition, the hydraulic efficiency and exciting force should be taken into account together in design of low noise centri-fugal pumps.
Key wordscentrifugal pump   blade loading   fluid-induced exciting force   large eddy simulation   flow noise   sound-vibration coupling   
收稿日期: 2013-03-12;
基金资助:

国家自然科学基金资助项目(50976072);上海市教委重点学科建设项目(J50501)

通讯作者: 杨爱玲(1969—),女,湖南华容人,教授(alyang@usst.edu.cn),主要从事叶轮机械流体动力学、流动噪声预测与控制研究.   
作者简介: 徐洋(1986—),女,黑龙江哈尔滨人,硕士研究生(xuyanglmy@163.com),主要从事叶轮机械流动噪声控制研究.
引用本文:   
杨爱玲,徐洋,李国平等. 叶片载荷对离心泵内流动激励力及噪声的影响[J]. 排灌机械工程学报, 2014, 32(1): 23-28.
YANG Ai-Ling-,XU Yang-,LI Guo-Ping- et al. Effect of blade loading on fluid-induced exciting force and noise in centrifugal pumps[J]. Journal of Drainage and Irrigation Machinery Engin, 2014, 32(1): 23-28.
 
[1] Spence R, Amaral-Teixeira J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & Fluids, 2009,38(6): 1243-1257.
[2] Berten S, Dupont P, Farhat M, et al. Rotor-stator inte-raction induced pressure fluctuations: CFD and hydroacoustic simulaton in the stationary components of a multistage centrifugal pump[C]//Proceedings of the 5th Joint ASME/JSME Fluids Engineering Conference. San Diego, California,USA:ASME,2007: 1-8.
[3] 丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,39(6): 60-67.
Cong Guohui, Wang Fujun. Numerical investigation of unsteady pressure fluctuations near volute tongue in a double-suction centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(6): 60-67.(in Chinese)
[4] Barrio R, Blanco E, Parrondo J, et al. The effect of impeller cutback on the fluid-dynamic pulsations and load at the blade-passing frequency in a centrifugal pump[J]. Journal of Fluids Engineering, 2008,130(11):111102.
[5] 王洋,张翔,黎义斌.离心泵变工况流场分析及径向力数值预测[J].排灌机械,2008, 26(5): 18-22.
Wang Yang, Zhang Xiang, Li Yibin. Off-design flow field analysis and radial force prediction of centrifugal pump[J]. Drainage and Irrigation Machinery, 2008, 26(5):18-22.(in Chinese)
[6] Barrio R, Parrondo J, Blanco E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers & Fluids, 2010,39(5):859-870.
[7] González J, Parrondo J, Santolaria C, et al. Steady and unsteady radial forces for a centrifugal pump with impe-ller to tongue gap variation[J]. Journal of Fluids Engineering, 2006,128(3):454-462.
[8] Yoshida Y, Tsujimoto Y, Kawakami T, et al. Unba-lanced hydraulic forces caused by geometrical manufacturing deviations of centrifugal impellers[J]. Journal of Fluids Engineering, 1998,120(3):531-537.
[9] 蒋爱华.流体激励诱发离心泵基座振动的研究[D].上海:上海交通大学机械系统振动国家重点实验室,2011.
[10] Tan Y X, Wang H G, Yang A L, et al. Numerical prediction of hydrodynamic noise for a centrifugal pump[C]//Proceedings of the 2010 International Conference on Pumps and Fans, 2010:89-94.
[11] 王振宇,杨爱玲,戴韧. 离心泵流动诱导噪声的数值预测[J].机械工程学报,2012,48(1):162-167.
Wang Zhenyu, Yang Ailing, Dai Ren. Numerical prediction of the flow-induced noise of centrifugal pump[J]. Journal of Mechanical Engineering, 2012,48(1):162-167.(in Chinese)
[1] 杨军虎, 李海龙, 龚朝晖, 夏书强, 罗凯凯. 离心泵反转作液力透平的力学特性[J]. 排灌机械工程学报, 2014, 32(1): 12-16.
[2] 王洋, 王振伟, 王维军, 叶道星. 叶轮注塑成型模拟及工艺参数优化[J]. 排灌机械工程学报, 2013, 31(9): 747-751.
[3] 黄剑峰, 张立翔, 郭亚昆. 水轮机活动导叶调节运动动态绕流的大涡模拟[J]. 排灌机械工程学报, 2013, 31(8): 702-707.
[4] 郭雪岩, 王斌杰, 杨帆. 水力旋流器流场大涡模拟及其结构改进[J]. 排灌机械工程学报, 2013, 31(8): 696-701.
[5] 王桃,, 孔繁余, 何玉洋, 杨孙圣. 离心泵作透平的研究现状[J]. 排灌机械工程学报, 2013, 31(8): 674-680.
[6] 袁寿其, 衡亚光, 洪锋, 袁建平, 司乔瑞, 胡博. 2种隔舌模型对离心泵性能模拟的影响[J]. 排灌机械工程学报, 2013, 31(7): 553-557.
[7] 陈红勋,, 林育战, 朱兵. 缝隙引流叶轮离心泵空化试验研究[J]. 排灌机械工程学报, 2013, 31(7): 570-574.
[8] 袁寿其, 衡亚光, 洪锋, 袁建平, 司乔瑞, 胡博. 2种隔舌模型对离心泵性能模拟的影响[J]. 排灌机械工程学报, 2013, 31(7): 553-557.
[9] 李述林, 肖若富, 王文平, 潘潇, 陶然. 某型加油泵性能优化[J]. 排灌机械工程学报, 2013, 31(6): 471-474.
[10] 张永学, 陈龙, 周鑫, 江翠伟, 苏敏. 高效率离心泵水力设计及BVF诊断[J]. 排灌机械工程学报, 2013, 31(6): 479-483.
[11] 刘建瑞, 高振军, 郭晨旭, 何小可, 文海罡. 50IB-32型离心泵汽蚀性能的数值模拟与试验[J]. 排灌机械工程学报, 2013, 31(6): 475-478.
[12] 王勇, 刘厚林, 袁寿其, 刘东喜, 王健. 不同叶片包角离心泵空化振动和噪声特性[J]. 排灌机械工程学报, 2013, 31(5): 390-393.
[13] 黎义斌, 李仁年, 王秀勇, 赵伟国, 李鹏辉. 混流泵内部流动不稳定特性的数值模拟[J]. 排灌机械工程学报, 2013, 31(5): 384-389.
[14] 江伟,李国君,张新盛. 离心泵叶片出口边倾斜角对压力脉动的影响[J]. 排灌机械工程学报, 2013, 31(5): 369-372.
[15] 张永学, 周鑫, 姬忠礼, 陈龙, 苏敏. 低比转数离心泵的水力设计及性能预测[J]. 排灌机械工程学报, 2013, 31(4): 300-304.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved