排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2013, Vol. 31 Issue (9): 778-782    DOI: 10.3969/j.issn.1674-8530.2013.09.009
水利水电工程 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水平轴海流能水轮机的多目标优化设计
郭鹏程, 朱国俊, 罗兴锜
西安理工大学水利水电学院, 陕西 西安 710048
Multi-objective optimization design of horizontal-axis marine current turbine
Guo Pengcheng, Zhu Guojun, Luo Xingqi
School of Hydropower Engineering, Xi′an University of Technology, Xi′an, Shaanxi 710048, China
 全文: PDF (2204 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 能量捕获效率和轴向水推力系数是海流能水轮机转轮的2个重要性能参数.提出了一种水平轴海流能水轮机转轮的多目标优化设计方法.首先采用贝塞尔曲线参数化技术将海流能水轮机转轮叶片节距角分布曲线进行参数化;然后选取转轮的能量捕获效率和轴向水推力系数作为目标函数,并根据BBD试验设计方法和响应面技术建立设计变量和2个目标函数之间的二次多项式响应关系;最后采用NSGA-II多目标遗传算法作为优化算法,以叶片节距角分布曲线控制参数为设计变量,以能量捕获效率和轴向水推力系数作为目标函数,以设计变量与目标函数之间的响应关系作为个体适应度评价函数,对海流能转轮进行优化.优化后,叶轮的轴向水推力系数降低了2%,同时能量捕获效率提高了0.4%,证明了所采用的优化方法的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭鹏程
朱国俊
罗兴锜
关键词海流能水轮机   多目标优化   试验设计   NSGA-II算法     
Abstract: Power coefficient and axial thrust coefficient are two important performance parameters of a marine current turbine. Thus a multi-objective optimization design method was proposed to optimize those coefficients for a horizontal-axis marine current turbine. Firstly, the pitch angle distribution curve of the turbine was parameterized by using a Bezier curve; and then the power coefficient and axial thrust coefficient were selected as the objective function, the levels of design factors were decided by the Box-Behnken experimental design method, and a 2nd polynomial relationship between the factors and the objective function was established by making use of response surface technology. At last, the turbine pitch angle curve was optimized by employing NSGA-II algorithm. In the optimization power coefficient and axial thrust coefficient were specified as the objective function, and the determined response surface was used as the individual fitness. It was demonstrated that the thrust coefficient was decreased by 2% and the power coefficient was increased by 0.4% for the optimized turbine. This confirmed the effectiveness of the optimization method proposed here.
Key wordsmarine current turbine   multi-objective optimization   experimental design   NSGA-II algorithm   
收稿日期: 2012-12-07;
基金资助:

国家自然科学基金资助项目(50979091);陕西省自然科学基础研究计划项目(2012JM7005);陕西省教育厅专项科研计划项目(2010JK735)

通讯作者: 郭鹏程(1975—),男,陕西府谷人,博士,副教授(guoyicheng@126.com),主要从事水力机械技术研究.   
作者简介: 朱国俊(1984—),男,广西北海人,博士研究生(zbbpearl@126.com),主要从事水力机械技术研究.
引用本文:   
郭鹏程,朱国俊,罗兴锜. 水平轴海流能水轮机的多目标优化设计[J]. 排灌机械工程学报, 2013, 31(9): 778-782.
GUO Peng-Cheng,ZHU Guo-Jun,LUO Xing-Qi. Multi-objective optimization design of horizontal-axis marine current turbine[J]. Journal of Drainage and Irrigation Machinery Engin, 2013, 31(9): 778-782.
 
[1] Liu Hongwei, Ma Shun, Li Wei, et al. A review on the development of tidal current energy in China[J]. Renewable and Sustainable Energy Reviews, 2011,15(2):1141-1146.
[2] 罗兴锜, 郭鹏程, 朱国俊, 等. 基于NSGA-Ⅱ算法的水轮机活动导叶多目标优化设计[J]. 排灌机械工程学报, 2010,28(5):369-373. 浏览
Luo Xingqi, Guo Pengcheng, Zhu Guojun, et al. Multi-object optimum design for hydraulic turbine guide vane based on NSGA-Ⅱ algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(5):369-373.(in Chinese) 浏览
[3] 卢金铃, 席光, 祁大同. 反问题与神经网络相结合的混流泵叶片优化设计[J]. 西安交通大学学报, 2004, 38(3):308-312.
Lu Jinling, Xi Guang, Qi Datong. Blade optimization of mixed-flow pump using inverse design method and neural network[J].Journal of Xi′an Jiaotong University, 2004,38(3):308-312.(in Chinese)
[4] 琚亚平, 张楚华. 基于人工神经网络与遗传算法的风力机翼型优化设计方法[J]. 中国电机工程学报, 2009, 29(20):106-111.
Ju Yaping, Zhang Chuhua. Optimal design method for wind turbine airfoil based on artificial neural network model and genetic algorithm[J]. Proceedings of the CSEE, 2009,29(20):106-111.(in Chinese)
[5] Batten W M J, Bahaj A S, Molland A F, et al. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines[J]. Ocean Engineering, 2007,34(7):1013-1020.
[6] Bahaj A S, Molland A F, Chaplin J R, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J]. Renewable Energy, 2007,32(3):407-426.
[7] Batten W M J, Bahaj A S, Molland A F, et al. The prediction of the hydrodynamic performance of marine current turbines[J]. Renewable Energy, 2008,33(5):1085-1096.
[8] Bahaj A S, Batten W M J, McCann G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines[J]. Renewable Energy, 2007,32(15):2479-2490.
[9] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京:高等教育出版社, 2001.
[10] Turnock S R, Phillips A B, Banks J, et al. Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines[J]. Ocean Engineering, 2011,38(11/12):1300-1307.
[11] 郭鹏程, 罗兴锜, 覃延春. 基于计算流体动力学的混流式水轮机性能预估[J]. 中国电机工程学报, 2006, 26(17):132-137.
Guo Pengcheng, Luo Xingqi, Qin Yanchun. Numerical performance prediction for a francis turbine based on computational fluid dynamics stage simulation[J]. Proceedings of the CSEE, 2006,26(17):132-137.(in Chinese)
[12] 郭鹏程, 罗兴锜, 刘胜柱. 离心泵内转轮与蜗壳间耦合流动的三维紊流数值模拟[J]. 农业工程学报, 2005, 21(8):1-5.
Guo Pengcheng, Luo Xingqi, Liu Shengzhu. Numerical simulation of 3D turbulent flow fields through a centrifugal pump including impeller and volute casing[J]. Transactions of the CSAE, 2005,21(8):1-5.(in Chinese)
[1] 罗兴锜, 郭鹏程, 朱国俊, 丁 况. 基于NSGA-Ⅱ算法的水轮机活动导叶多目标优化设计[J]. 排灌机械工程学报, 2010, 28(5): 369-373.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved