排灌机械工程学报
   首页  学报介绍  编 委 会  作者园地  征订启事  编校法规  编读往来  录用公告  广告合作   行业新闻  留  言  English 
排灌机械工程学报  2012, Vol. 30 Issue (2): 171-175    DOI: 10.3969/j.issn.1674-8530.2012.02.010
泵理论与技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于CFD的混流泵空化特性研究
 常书平, 王永生

(海军工程大学船舶与动力学院, 湖北 武汉 430033)
Cavitation performance research of mixedflow pump based on CFD
 CHANG  Shu-Ping, WANG  Yong-Sheng
(College of Naval Architecture and Marine Power, Naval University of Engineering, Wuhan, Hubei 430033, China)
 全文: PDF (2070 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 应用剪切应力输运(SST)湍流模型和基于Rayleigh-Plesset方程的混合物均相流空化模型,求解雷诺时均Navier-Stokes方程,对某混流泵在设计工况时的流场进行数值模拟.根据计算结果获取了泵的扬程衰减曲线,捕捉到泵内空化的发生、发展过程,对轻微空化、临界空化和严重空化3种工况下叶轮内空泡体积分布特性做对比分析.模拟结果表明:该泵空化性能满足设计要求;叶轮内空泡最初发生在叶片吸力面进水边靠近轮缘处,该空泡区随汽蚀余量降低逐渐向轮毂方向和叶轮出口方向延伸;轮缘空泡初生于叶片进水边,沿着叶缘翼型逐渐发展成一条长带;轮毂空泡集中于叶根翼型尾部,轮毂空泡体积分数明显大于轮缘;叶片各通道间空泡分布相似,严重空化时空泡造成叶片通道严重阻塞致使泵扬程急剧下降.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
常书平
王永生
关键词混流泵   叶轮   空化   计算流体动力学   数值模拟     
Abstract: The cavitating flow in a mixedflow pump under the design working condition was simulated numerically with the SST turbulence model and homogeneous mixture cavitation model based on the Rayleigh-Plesset equations by solving the timeaveraged Navier-Stokes equations.  The NPSHH curve was extracted from the results, the cavitation inception and development were captured as well. The features of vapour volume fraction distribution in the impeller were comparatively analyzed under the slight, critical and severe cavitation conditions. The results show that this pump has met the requirement on its cavitation performance. A cavity appears firstly on the blade suction surface near the leading edge and the shroud, as NPSH is reduced, it extends towards the hub and trailing edge.The tip cavity originates from the blade leading edge and develops into a strip along a blade contour on the shroud. The hub cavity accumulates near the blade trailing edge on the hub, further the vapour volume fraction on the hub is evidently larger than on the shroud. A similar cavity distribution is indentified in all the impeller passages, and the serious blockage due to cavity in the flow passages results in a sharp reduction in pump head under the sever cavitation condition.
Key wordsmixedflow pump   impeller   cavitation   computational fluid dynamics   numerical simulation   
收稿日期: 2011-09-05; 出版日期: 2012-03-30
基金资助:

国家自然科学基金资助项目(51009142)

通讯作者: 常书平(1984—),男,河北冀州人,博士研究生(changshuji@yahoo.com.cn),主要从事流体机械性能研究.   
作者简介: 王永生(1955—),男,浙江富阳人,教授, 博士生导师(yongshengwang666@126.com),主要从事流体机械性能研究.
引用本文:   
常书平,王永生. 基于CFD的混流泵空化特性研究[J]. 排灌机械工程学报, 2012, 30(2): 171-175.
CHANG Shu-Ping,WANG Yong-Sheng. Cavitation performance research of mixedflow pump based on CFD[J]. Journal of Drainage and Irrigation Machinery Engin, 2012, 30(2): 171-175.
 
[1] 参考文献(References)
[2] 袁丹青,陈向阳,白滨,等.水力机械空化空蚀问题的研究进展[J].排灌机械, 2009, 27(4): 269-272.
Yuan Danqing, Chen Xiangyang, Bai Bin, et al. Research progress of cavitation and erosion in hydraulic machinery[J]. Drainage and Irrigation Machinery, 2009, 27(4): 269-272. (in Chinese)
[3] Adrian S, Romeo S R, Liviu E A, et al. A new approach in numerical assessment of the cavitation behaviour of centrifugal pumps[J]. International Journal of Fluid Machinery Machinery and Systems, 2011, 4(1): 104-113.
[4] 李军, 刘立军, 李国君, 等. 离心泵叶轮内空化流动的数值预测[J]. 工程热物理学报, 2007, 28(6): 948-950.
Li Jun, Liu Lijun, Li Guojun, et al. Numerical prediction of cavitation flows in a centrifugal pump impeller[J]. Journal of Engineering Thermophysis, 2007, 28(6): 948-950. (in Chinese)
[5] Pierrat D, Gros L, Pintrand G, et al. Experimental and numerical investigations of leading edge cavitation in a helicocentrifugal pump[C]//Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Hawaii:[s.n.],2008.
[6] 杨正军, 王福军, 刘竹青, 等. 基于CFD的轴流泵空化特性预测[J]. 排灌机械工程学报, 2011, 29(1): 11-15.
Yang Zhengjun, Wang Fujun, Liu Zhuqing, et al. Prediction of cavitation performance of axialflow pump based on CFD[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(1): 11-15. (in Chinese)
[7] 甘加业,薛永飞,吴克启.混流泵叶轮内空化流动的数值计算[J].工程热物理学报,2007,28(S1): 165-168.
Gan Jiaye, Xue Yongfei, Wu Keqi. Numerical prediction of cavitation in a mixedflow pump[J]. Journal of Engineering Thermophysics, 2007, 28(S1): 165-168. (in Chinese)
[8] 王勇,刘厚林,袁寿其,等.离心泵内部空化特性的CFD模拟[J]. 排灌机械工程学报, 2011, 29(2): 99-103.
Wang Yong,Liu Houlin, Yuan Shouqi, et al. CFD simulation on cavitation characteristics in centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(2): 99-103. (in Chinese)
[9] Fujiyama K, Kim C H, Hitomi. Performance and cavitation evaluation of marine propeller using numerical simulations[C]//Proceedings of the 2nd International Symposium on Marine Propulsors. Hamburg:[s.n.], 2011.
[10] 王磊, 常近时. 混流式水轮机转轮优化设计的空化流计算[J]. 农业机械学报, 2009, 40(9): 98-102.
Wang Lei, Chang Jinshi. Cavitation simulation of Francis turbine Runner for hydraulic optimization design[J]. Transactions of the Chinese Society for Agriculture Machinery, 2009, 40(9): 98-102. (in Chinese)
[11] 谭磊,曹树良.基于滤波器湍流模型的水翼空化数值模拟[J].江苏大学学报:自然科学版,2010,31(6):683-686.
Tan Lei,Cao Shuling. Numerical simulation of hydrofoil cavitation based on filterbased model[J]. Journal of Jiangsu University: Natural Science Edition, 2010, 31(6): 683-686. (in Chinese)
[12] Liu C J, Wang Y S. Numerical simulation and analysis of cavitation performance of waterjet[C]//Proceedings of the International Conference of Waterjet Propulsion. London:[s.n.], 2008.
[1] 袁寿其, 叶丽婷, 张金凤, 袁野, 张伟捷. 分流叶片对离心泵内部非定常流动特性的影响[J]. 排灌机械工程学报, 2012, 30(4): 373-.
[2] 刘竹青1, 肖若富1, 吕腾飞1, 李述林2. 弯掠叶片对轴流泵驼峰及空化性能的影响[J]. 排灌机械工程学报, 2012, 30(3): 270-273.
[3] 严敬1, 王桃1, 肖国华2, 李宇2. 基于儒可夫斯基变换的轴流叶片翼型设计[J]. 排灌机械工程学报, 2012, 30(3): 265-269.
[4] 董亮, 刘厚林, 谈明高, 王凯, 王勇. 离心泵全流场与非全流场数值计算[J]. 排灌机械工程学报, 2012, 30(3): 274-278.
[5] 郑源1, 杨春霞2, 周大庆1, 沈明辉3, 李效旭2. 卧轴双转轮混流式水轮机的优化设计[J]. 排灌机械工程学报, 2012, 30(3): 341-345.
[6] 李树勋1,2, 徐登伟1, 李确1, 王朝富1. 倒吊桶先导式蒸汽疏水阀的设计与数值模拟[J]. 排灌机械工程学报, 2012, 30(3): 346-350.
[7] 崔宝玲1, 黄达钢1, 史佩琦1, 金庆明2. 叶顶间隙对低比转数半开式离心泵性能的影响[J]. 排灌机械工程学报, 2012, 30(3): 283-288.
[8] 程效锐, 李仁年, 黎义斌, 范赢, 申立新. 螺旋离心泵叶片变螺距型线方程[J]. 排灌机械工程学报, 2012, 30(3): 289-294.
[9] 邴浩, 曹树良, 谭磊, 陆力. 混流泵导叶对其性能的影响[J]. 排灌机械工程学报, 2012, 30(2): 125-130.
[10] 袁建平, 金荣, 陈红亮, 付燕霞, 孙威. 离心泵用赫姆霍兹水消声器声学特性数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 141-146.
[11] 何秀华, 李富, 毕雨时, 邓志丹, 王健. 单振子双腔体V形管无阀压电泵的流场分析[J]. 排灌机械工程学报, 2012, 30(2): 153-156.
[12] 张德胜, 施卫东, 王川, 王国涛, 邹萍萍. 斜流泵叶轮和导叶叶片数对压力脉动的影响[J]. 排灌机械工程学报, 2012, 30(2): 167-170.
[13] 杨敏官, 尹必行, 康灿, 孙鑫恺, 车占富. 绕水翼非定常空化流场数值模拟[J]. 排灌机械工程学报, 2012, 30(2): 192-197.
[14] 汤跃, 汤玲迪, 刘二会. 闸阀调节过程的三维模拟及其动态模型[J]. 排灌机械工程学报, 2012, 30(2): 219-224.
[15] 田飞, 施卫东, 卢熙宁, 陈斌, 欧鸣雄. 三叶片潜水搅拌机的数值模拟[J]. 排灌机械工程学报, 2012, 30(1): 11-14.

江苏大学梦溪校区(镇江市梦溪园巷30号)图书馆5楼 0511-84440893 传真0511--84440033
Copyright 江苏大学杂志社 2010-2015 All Rights Reserved